Nanocarrier(s) as an Emerging Platform for Breast Cancer Therapy

  • Sarjana Raikwar Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar (M.P.) 470003, INDIA

Abstract

Nanocarrier(s) are the potential carrier to revolutionize breast cancer diagnosis and therapy. Development of nanocarrier(s) loaded with drug, which is targeted to the cancer cell using ligand mediated drug delivery system. Some therapeutic nanocarrier(s) have been approved for clinical use. There are only limited numbers of clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. Targeted drug delivery system is a unique approach for drug delivery to the appropriate site which is highly efficient, biocompatible, and non-immunogenic. The receptor mediated endocytosis is one of the targeting approaches specially for targeting anticancer drug to cancerous site. Breast cancer cells have overexpressed receptors like folate, transferrin, estrogen, human epidermal growth factor receptors (HER) which can be used for effective site specific drug delivery to cancerous cells using appropriate receptor specific ligand. This review examines some of the nanocarrier and discusses the challenges in translating basic research to the clinic and the potential predictive markers of resistance to HER2-targeted therapies in breast cancer, novel drugs and drug combinations, including the promise of immunotherapy.


Keywords: Breast cancer, Nanocarrier, Tumor, Receptor, Nanotechnology, immunotherapy.                                                                                                                                                       

Downloads

Download data is not yet available.

Author Biography

Sarjana Raikwar, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar (M.P.) 470003, INDIA

Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar (M.P.) 470003, INDIA                                                                               

References

1. Parodi, A. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotech. 2012; 8:61–68.
2. Tay, C. Y. et al. Reality check for nanomaterials-mediated therapy with 3D biomimetic culture systems. Adv. Funct. Mater. 26, 4046–4065 (2016).
3. Shi, X., von dem Bussche, A., Hurt, R. H., Kane, A. B. & Gao, H. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nat. Nanotechnol. 2011; 6:714–719.
4. Molinaro, R. et al. Biomimetic proteolipid vesicles for targeting inflamed tissues. Nat. Mater. 2016; 15:1037–1046.
5. Matsumoto, Y. et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat. Nanotechnol. 2016; 11533–538.
6. Setyawati, M. I. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013; 4:1673.
7. Setyawati, M. I., Tay, C. Y., Bay, B. H. & Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017; 11:5020–5030.
8. Tay, C. Y., Setyawati, M. I. & Leong, D. T. Nanoparticle density: a critical biophysical regulator of endothelial permeability. ACS Nano 2017; 11:2764–2772.
9. Wang, J., Zhang, L., Peng, F., Shi, X. & Leong, D. T. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem. Mater. 2018; 30:3759–3767.
10. Qiu, Y. et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat. Commun. 8, 15594 (2017).
11. Ding, X. et al. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 2019; 10:41.
12. Li, L. et al. Actively targeted deep-tissue imaging and photothermal-chemo therapy of breast cancer by antibody-functionalized drug-loaded X-rayresponsive bismuth sulfide@mesoporous silica core-shell nanoparticles. Adv. Funct. Mater. 2018; 28:1704623.
13. Peng, F. et al. Silicon-nanowire-based nanocarriers with ultrahigh drugloading capacity for in vitro and in vivo cancer therapy. Angew. Chem. Int. Ed. 2013; 52:1457–1461.
14. Setyawati, M. I., Mochalin, V. M. & Leong, D. T. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano 2016; 10:1170–1181.
15. Yamashita, K. et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol. 6, 321–328 (2011).
16. DeLoid, G. et al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 2014; 5:3514.
17. Hirai, T. et al. Metal nanoparticles in the presence of lipopolysaccharides trigger the onset of metal allergy in mice. Nat. Nanotechnol. 2016; 11:808–816.
18. King CR, Kraus MH, Aaronson SA, Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 1985; 229(4717):974–976.
19. Schechter AL, Hung MC, Vaidyanathan L, Weinberg RA, Yang-Feng TL, Francke U, Ullrich A, Coussens L (1985) The neu gene: an erbBhomologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 229(4717): 976–978.
20. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL , Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235(4785):177–182.
21. Esteva FJ, Monoclonal antibodies, small molecules, and vaccines in the treatment of breast cancer. Oncologist 2004; 9:4–9.
22. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L, Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344(11):783–792.
23. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D, Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006; 355(26):2733–2743.
24. Adams CW, Allison DE, Flagella K, Presta L, Clarke J, Dybdal N, McKeever K, Sliwkowski MX, Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 2006; 55(6): 717–727.
25. Seidman AD, Fornier M, Esteva FJ, Tan L, Kaptain S, Bach A, Panageas KS, Arroyo C, Valero V, Currie V, Gilewski T, Theodoulou M, Moynahan ME, Moasser M, Sklarin N, Dickler M, D’Andrea G, Cristofanilli M, Rivera E, Hortobagyi GN, Norton L, Hudis C, Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 2001; 19(10):2587–2595.
26. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF. American Society of Clinical O, College of American P, Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 2013; 31(31):3997–4013.
27. Baselga J, Cortes J, Kim SB, Im SA, Hegg R, Im YH, Roman L, Pedrini JL, Pienkowski T, Knott A, Clark E, Benyunes MC, Ross G, Swain SM, Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 2012; 366(2):109–119.
28. Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, Lluch A, Staroslawska E, de la Haba-Rodriguez J, Im SA, Pedrini JL, Poirier B, Morandi P, Semiglazov V, Srimuninnimit V, Bianchi G, Szado T, Ratnayake J, Ross G, Valagussa P, Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 2012; 13(1):25–32.
29. Schneeweiss A, Chia S, Hickish T, Harvey V, Eniu A, Hegg R, Tausch C, Seo JH, Tsai YF, Ratnayake J, McNally V, Ross G, Cortes J, Pertuzumab plus trastuzumab in combination with standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer: a randomized phase II cardiac safety study (TRYPHAENA). Ann Oncol 2013; 24(9):2278–2284.
30. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Dieras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K, Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19):1783–1791.
31. Esteva FJ, Guo H, Zhang S, Santa-Maria C, Stone S, Lanchbury JS, Sahin AA, Hortobagyi GN, Yu D, PTEN, PIK3CA, p-AKT, and p-p70S6K status: association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol 2010; 177(4):1647–1656.
32. Chandarlapaty S, Sakr RA, Giri D, Patil S, Heguy A, Morrow M, Modi S, Norton L, Rosen N, Hudis C, King TA, Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin Cancer Res 2012; 18(24) 6784–6791.
33. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R, A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell ; 200712(4):395–402.
34. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ, Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65(23):11118–11128.
35. Zhang S, Huang WC, Li P, Guo H, Poh SB, Brady SW, Xiong Y, Tseng LM, Li SH, Ding Z, Sahin AA, Esteva FJ, Hortobagyi GN, Yu D, Combating trastuzumab resistance by targeting SRC, a common node downstream of multiple resistance pathways. Nat Med 17(4): 461–469.
36. Lin NU, Winer EP, Wheatley D, Carey LA, Houston S, Mendelson D, Munster P, Frakes L, Kelly S, Garcia AA, Cleator S, Uttenreuther-Fischer M, Jones H, Wind S, Vinisko R, Hickish T (2012) A phase II study of afatinib (BIBW 2992), an irreversible ErbB family blocker, in patients with HER2- positive metastatic breast cancer progressing after trastuzumab. Breast Cancer Res Treat 2011; 133(3):1057–1065.
37. Lu CH, Wyszomierski SL, Tseng LM, Sun MH, Lan KH, Neal CL, Mills GB, Hortobagyi GN, Esteva FJ, Yu D, Preclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency. Clin Cancer Res 2007; 13(19):5883–5888.
38. Morrow PK, Wulf GM, Ensor J, Booser DJ, Moore JA, Flores PR, Xiong Y, Zhang S, Krop IE, Winer EP, Kindelberger DW, Coviello J, Sahin AA, Nunez R, Hortobagyi GN, Yu D, Esteva FJ, Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy. J Clin Oncol 2011; 29(23):3126–3132.
39. Jerusalem G, Andre F, Chen D, Robinson D, Ozguroglu M, Lang I, White M, Toi M, Taran T, Gianni L, Evaluation of everolimus (EVE) in HER2+ advanced breast cancer (BC) with activated PI3K/mTOR pathway: exploratory biomarker observations from the BOLERO-3 trial. Eur J Cancer 2013; 49(Suppl 3): PS8.
40. Nahta R, Hung MC, Esteva FJ, The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004; 64(7):2343–2346.
41. Jhaveri K, Ochiana SO, Dunphy MP, Gerecitano JF, Corben AD, Peter RI, Janjigian YY, Gomes-Dagama EM, Koren 3rd J, Modi S, Chiosis G. Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 2014; 23(5):611–628.
42. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 2006; 3(5):269–280.
43. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ, Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65(23):11118–11128.
44. Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, Lluch A, Staroslawska E, de la Haba-Rodriguez J, Im SA, Pedrini JL, Poirier B, Morandi P, Semiglazov V, Srimuninnimit V, Bianchi G, Szado T, Ratnayake J, Ross G, Valagussa P. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 2012; 13(1):25–32.
45. Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C, Prognostic and predictive value of tumour-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol 2013; 31(7):860–867.
46. Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, Teng MW, Smyth MJ, Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci USA 2011; 108(17):7142–7147.
47. Peoples GE, Gurney JM, Hueman MT, Woll MM, Ryan GB, Storrer CE, Fisher C, Shriver CD, Ioannides CG, Ponniah S, Clinical trial results of a HER2/neu (E75) vaccine to prevent recurrence in high-risk breast cancer patients. J Clin Oncol 2005; 23(30):7536–7545.
Statistics
172 Views | 172 Downloads
How to Cite
1.
Raikwar S. Nanocarrier(s) as an Emerging Platform for Breast Cancer Therapy. JDDT [Internet]. 24Apr.2019 [cited 28Mar.2020];9(2-A):5-. Available from: http://jddtonline.info/index.php/jddt/article/view/2761