Liposomes encapsulating cyclodextrin enclosed hydrophobic anti-cancer drugs: a novel drug delivery system for cancer.

Not required

  • Dr. Rupalben Kaushalkumar Jani Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India
  • Mansi Pandya Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India
  • Hemali Rathod Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India

Abstract

In the current situation in the health care industry is to face many challenges to cure the cancer. The second highest death were noticed by the cancer in society. Therefore, the efficient treatment is required. There many treatmentsare available to cure the cancer but not found much efficient.  The advance development in the hydrophobic drug in the form of water-soluble drug cyclodextrin complex in liposomes has been investigated. This new investigation in to the complex in liposomes play key role in combination of the cyclodextrin and liposomes in the one common system. Such system would potentially increase the drug to lipid mass ratio. In comparison to conventional treatment this ratio is high therefore it enlarges the range of insoluble drug amenable to encapsulation to include, allow targeting, of complexes to specific sites and reduce toxicity, for instance and membrane destabilizing agents. This extensive review explores the novel drug delivery for the cancer treatment.


Keywords: Liposomes, cyclodextrin, anti-cancer, novel drug delivery system

Downloads

Download data is not yet available.

Author Biographies

Dr. Rupalben Kaushalkumar Jani, Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India

Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India

Mansi Pandya, Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India

Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India

Hemali Rathod, Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India

Faculty of Pharmacy, Parul Institute of Pharmacy and Research, Parul University, Gujarat, India

References

1. Zhang J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Advanced drug delivery reviews. 2013;65(9):1215-33.
2. Lu Y, Guo T, Qi J, Zhang J, Wu W. Enhanced dissolution and stability of lansoprazole by cyclodextrin inclusion complexation: preparation, characterization, and molecular modeling. AAPS PharmSciTech. 2012;13(4):1222-9.
3. Ozdemir N, Erkin J. Enhancement of dissolution rate and bioavailability of sulfamethoxazole by complexation with beta-cyclodextrin. Drug development and industrial pharmacy. 2012;38(3):331-40.
4. McCormack B, Gregoriadis G. Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-beta-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery. Biochimica et biophysica acta. 1996;1291(3):237-44.
5. Hiasa Y, Ohshima M, Kitahori Y, Konishi N, Fujita T, Yuasa T. beta-Cyclodextrin: promoting effect on the development of renal tubular cell tumors in rats treated with N-ethyl-N-hydroxyethylnitrosamine. Journal of the National Cancer Institute. 1982;69(4):963-7.
6. Loftsson T, Jarho P, Masson M, Jarvinen T. Cyclodextrins in drug delivery. Expert opinion on drug delivery. 2005;2(2):335-51.
7. Ohtani Y, Irie T, Uekama K, Fukunaga K, Pitha J. Differential effects of alpha-, beta- and gamma-cyclodextrins on human erythrocytes. European journal of biochemistry. 1989;186(1-2):17-22.
8. Kiss T, Fenyvesi F, Bacskay I, Varadi J, Fenyvesi E, Ivanyi R, et al. Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: evidence for the role of cholesterol extraction. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2010;40(4):376-80.
9. Kaushalkumar Jani R, Krupa G. Active targeting of nanoparticles: An innovative technology for drug delivery in cancer therapeutics2019. 408-15 p.
10. Pathak N, and P. Pathak. Nanoparticles and Target Drug Delivery for Cancer Treatment: A Comprehensive Review. International Journal of Drug Regulatory Affairs.2019;7(1):53-8.
11. Arias JL. Liposomes in drug delivery: a patent review (2007 - present). Expert opinion on therapeutic patents. 2013;23(11):1399-414.
12. Qian S, Li C, Zuo Z. Pharmacokinetics and disposition of various drug loaded liposomes. Current drug metabolism. 2012;13(4):372-95.
13. McCormack B, Gregoriadis G. Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery. Journal of drug targeting. 1994;2(5):449-54.
14. Suthar SM, Rathva BA. DEVELOPMENT OF LIPOSOMAL FORMULATION: FROM FORMULATION TO STERILIZATION. World Journal of Pharmaceutical Research. 2019;8(3):1561-71.
15. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical research. 1995;12(3):413-20.
16. Yasir M, Asif M, Kumar A, Aggarval A. Biopharmaceutical Classification System :An Account2010.
17. Loftsson T, Jarho P, Másson M, Järvinen T. Cyclodextrins in drug delivery. Expert opinion on drug delivery. 2005;2(2):335-51.
18. Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54(2):107-17.
19. Bhatt P, Vhora I, Patil S, Amrutiya J, Bhattacharya C, Misra A, et al. Role of antibodies in diagnosis and treatment of ovarian cancer: Basic approach and clinical status. Journal of Controlled Release. 2016;226:148-67.
20. Lalani RA, Bhatt P, Rathi M, Misra A. Abstract 2063: Improved sensitivity and in vitro efficacy of RGD grafted PEGylated gemcitabine liposomes in RRM1 siRNA pretreated cancer cells. Cancer research. 2016;76(14 Supplement):2063.
21. Reddy MN, Rehana T, Ramakrishna S, Chowdhary KPR, Diwan PV. Beta-cyclodextrin complexes of celecoxib: molecular-modeling, characterization, and dissolution studies. AAPS pharmSci. 2015;6(1):E7-E.
22. Jani RK, GK. Liposomal Formulations in Cancer Therapy: Basic Conceptsto Advanced Strategies. International Journal of Pharmaceutical Sciences and Drug Research 2018; 10(5):386-93.
23. Sanchez SA, Gunther G, Tricerri MA, Gratton E. Methyl-beta-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. The Journal of membrane biology. 2011;241(1):1-10.
24. Hatzi P, Mourtas S, Klepetsanis PG, Antimisiaris SG. Integrity of liposomes in presence of cyclodextrins: effect of liposome type and lipid composition. International journal of pharmaceutics. 2007;333(1-2):167-76.
25. McCormack B, Gregoriadis G. Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-β-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery. Biochimica et Biophysica Acta (BBA) - General Subjects. 1996;1291(3):237-44.
26. Bhatt P, Lalani R, Mashru R, Misra A. Abstract 2065: Anti-FSHR antibody Fab’ fragment conjugated immunoliposomes loaded with cyclodextrin-paclitaxel complex for improvedin vitro efficacy on ovarian cancer cells. Cancer research. 2016;76(14 Supplement):2065.
27. Vhora I, Patil S, Bhatt P, Gandhi R, Baradia D, Misra A. Receptor-targeted drug delivery: current perspective and challenges. Therapeutic delivery. 2014;5(9):1007-24.
28. Arima H, Hagiwara Y, Hirayama F, Uekama K. Enhancement of antitumor effect of doxorubicin by its complexation with γ-cyclodextrin in pegylated liposomes. Journal of drug targeting. 2006;14(4):225-32.
29. Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, et al. Curcumin-loaded gamma-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine : nanotechnology, biology, and medicine. 2012;8(4):440-51.
30. Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, et al. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. Int J Pharm. 2018;536(1):95-107.
31. Rahman S, Cao S, Steadman KJ, Wei M, Parekh HS. Native and beta-cyclodextrin-enclosed curcumin: entrapment within liposomes and their in vitro cytotoxicity in lung and colon cancer. Drug delivery. 2012;19(7):346-53.
32. Cavalcanti IM, Mendonca EA, Lira MC, Honrato SB, Camara CA, Amorim RV, et al. The encapsulation of beta-lapachone in 2-hydroxypropyl-beta-cyclodextrin inclusion complex into liposomes: a physicochemical evaluation and molecular modeling approach. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2011;44(3):332-40.
33. Kauscher U, Stuart MC, Drucker P, Galla HJ, Ravoo BJ. Incorporation of amphiphilic cyclodextrins into liposomes as artificial receptor units. Langmuir : the ACS journal of surfaces and colloids. 2013;29(24):7377-83.
34. Gasbarri C, Guernelli S, Boncompagni S, Angelini G, Siani G, De Maria P, et al. Fine-tuning of POPC liposomal leakage by the use of beta-cyclodextrin and several hydrophobic guests. Journal of liposome research. 2010;20(3):202-10.
35. Agashe H, Lagisetty P, Sahoo K, Bourne D, Grady B, Awasthi V. Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology. 2011;13(6):2609-23.
36. Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert opinion on drug delivery. 2011;8(5):565-80.
37. Arima H, Hagiwara Y, Hirayama F, Uekama K. Enhancement of antitumor effect of doxorubicin by its complexation with gamma-cyclodextrin in pegylated liposomes. Journal of drug targeting. 2006;14(4):225-32.
38. Zhou X, Yung B, Huang Y, Li H, Hu X, Xiang G, et al. Novel liposomal gefitinib (L-GEF) formulations. Anticancer research. 2012;32(7):2919-23.
39. Patil S, Bhatt P, Lalani R, Amrutiya J, Vhora I, Kolte A, et al. Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Advances. 2016;6(112):110951-63.
40. Cui J, Li C, Wang C, Li Y, Zhang L, Zhang L, et al. Development of Pegylated Liposomal Vincristine Using Novel Sulfobutyl Ether Cyclodextrin Gradient: Is Improved Drug Retention Sufficient to Surpass DSPE–PEG-Induced Drug Leakage? Journal of Pharmaceutical Sciences. 2011;100(7):2835-48.
41. Modi S, Xiang TX, Anderson BD. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions. Journal of controlled release : official journal of the Controlled Release Society. 2012;162(2):330-9.
42. Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method. Drug development and industrial pharmacy. 2000;26(12):1279-84.
43. Bhatt P, Lalani R, Vhora I, Patil S, Amrutiya J, Misra A, et al. Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. International journal of pharmaceutics. 2018;536(1):95-107.
44. Jain SK, Gupta Y, Jain A, Bhola M. Multivesicular liposomes bearing celecoxib-beta-cyclodextrin complex for transdermal delivery. Drug delivery. 2007;14(6):327-35.
45. Mendonça EAM, Lira MCB, Rabello MM, Cavalcanti IMF, Galdino SL, Pitta IR, et al. Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS PharmSciTech. 2012;13(4):1355-66.
46. Maestrelli F, Gonzalez-Rodriguez ML, Rabasco AM, Mura P. Preparation and characterisation of liposomes encapsulating ketoprofen-cyclodextrin complexes for transdermal drug delivery. International journal of pharmaceutics. 2005;298(1):55-67.
47. Fatouros DG, Hatzidimitriou K, Antimisiaris SG. Liposomes encapsulating prednisolone and prednisolone-cyclodextrin complexes: comparison of membrane integrity and drug release. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2001;13(3):287-96.
48. Maestrelli F, Gonzalez-Rodriguez ML, Rabasco AM, Mura P. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery. International journal of pharmaceutics. 2006;312(1-2):53-60.
49. Chakraborty KK, Naik SR. Therapeutic and hemolytic evaluation of in-situ liposomal preparation containing amphotericin - beta complexed with different chemically modified beta - cyclodextrins. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2003;6(2):231-7.
50. Patel J, Amrutiya J, Bhatt P, Javia A, Jain M, Misra A. Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. Journal of Microencapsulation. 2018;35(2):204-17.
51. Joguparthi V, Anderson BD. Effect of cyclodextrin complexation on the liposome permeability of a model hydrophobic weak Acid. Pharmaceutical research. 2008;25(11):2505-15.
52. Agashe H, Sahoo K, Lagisetty P, Awasthi V. Cyclodextrin-mediated entrapment of curcuminoid 4-[3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid] or CLEFMA in liposomes for treatment of xenograft lung tumor in rats. Colloids and surfaces B, Biointerfaces. 2011;84(2):329-37.
53. Chen H, Gao J, Wang F, Liang W. Preparation, characterization and pharmacokinetics of liposomes-encapsulated cyclodextrins inclusion complexes for hydrophobic drugs. Drug delivery. 2007;14(4):201-8.
54. Tandel H, Bhatt P, Jain K, Shahiwala A, Misra A. In-Vitro and In-Vivo Tools in Emerging Drug Delivery Scenario: Challenges and Updates.In: Misra ASA, editor. In-vitro and in-vivo tools in drug delivery research for optimum clinical outcomes. Boca Raton: CRC Press; 2018.
55. Bhatt P, Khatri N, Kumar M, Baradia D, Misra A. Microbeads mediated oral plasmid DNA delivery using polymethacrylate vectors: an effectual groundwork for colorectal cancer. Drug delivery. 2015;22(6):849-61.
56. Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2-3):106-21.
57. Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. International journal of pharmaceutics. 2007;332(1-2):1-16.
58. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochimica et biophysica acta. 1992;1104(1):226-32.
59. Benson HA. Transfersomes for transdermal drug delivery. Expert opinion on drug delivery. 2006;3(6):727-37.
60. Chen J, Lu WL, Gu W, Lu SS, Chen ZP, Cai BC. Skin permeation behavior of elastic liposomes: role of formulation ingredients. Expert opinion on drug delivery. 2013;10(6):845-56.
61. Ascenso A, Guedes R, Bernardino R, Diogo H, Carvalho FA, Santos NC, et al. Complexation and full characterization of the tretinoin and dimethyl-β-cyclodextrin complex. AAPS PharmSciTech. 2011;12(2):553-63.
62. Kaur N, Puri R, Jain SK. Drug-cyclodextrin-vesicles dual carrier approach for skin targeting of anti-acne agent. AAPS PharmSciTech. 2010;11(2):528-37.
63. Hardevinder S, Tiwary A, Jain S. Preparation and in Vitro, in Vivo Characterization of Elastic Liposomes Encapsulating Cyclodextrin-Colchicine Complexes for Topical Delivery of Colchicine2010. 397-407 p.
64. Cadena PG, Pereira MA, Cordeiro RB, Cavalcanti IM, Barros Neto B, Pimentel Mdo C, et al. Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochimica et biophysica acta. 2013;1828(2):309-16.
Statistics
32 Views | 46 Downloads
How to Cite
Jani, D. R., Pandya, M., & Rathod, H. (2019). Liposomes encapsulating cyclodextrin enclosed hydrophobic anti-cancer drugs: a novel drug delivery system for cancer. Journal of Drug Delivery and Therapeutics, 9(2-s), 598-605. https://doi.org/10.22270/jddt.v9i2-s.2671