Insecticidal, antimicrobial and antioxidant activity and elemental analysis of Cochlospermum religiosum (L.) Alston (Bixaceae)

  • B.G. Swathi Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India
  • B.S. Smruthi Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India
  • B Saima Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India
  • T.R. Prashith Kekuda Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

Abstract

Objectives: Cochlospermum religiosum (L.) Alston is one of the extensively used medicinal plant belonging to the family Bixaceae. In the present study, we determined antimicrobial, antioxidant, and insecticidal activity and elemental analysis of C. religiosum flowers.


Methods: Shade dried and powdered flower material was extracted by maceration process using methanol. Antibacterial activity of flower extract was determined by agar well diffusion assay against gram positive and gram negative bacteria. Antifungal activity was tested against two molds namely Rhizopus sp. and Curvularia sp. by poisoned food technique. Antioxidant activity was evaluated by DPPH free radical scavenging and ABTS free radical scavenging assays and ferric reducing assay. Insecticidal activity was assessed in terms of larvicidal activity against I, II and III instar larvae of Aedes species and Anopheles species. Elemental analysis was carried out to estimate the content of major and minor elements.


Results: The flower extract was effective in inhibiting all test bacteria. Overall, the flower extract was effective against gram positive bacteria to higher extent when compared to gram negative bacteria. Flower extract showed dose dependent scavenging of DPPH and ABTS radicals with an EC50 value of 2.72 and 1.50µg/ml, respectively. In ferric reducing assay, an increase in the absorbance with increase in concentration indicated reducing potential of flower extract. At 1mg/ml concentration, the flower extract caused 100% mortality of I, II and III instar larvae of Aedes species and Anopheles species. The flower was shown to contain potassium and iron in highest quantity among major and minor elements, respectively while magnesium and chromium content was least among major and minor elements, respectively.


Conclusions: The results are promising and the study highlights the possible utilization of the C. religiosum flowers against pathogenic microorganisms and oxidative stress and to manage mosquito-borne diseases. The flower can be used as a food supplement as it is shown to contain various mineral elements that are required.


Key words: Cochlospermum religiosum, Maceration, Agar well diffusion assay, DPPH, ABTS, Ferric reducing

Downloads

Download data is not yet available.

Author Biographies

B.G. Swathi, Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

B.S. Smruthi, Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

B Saima, Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

T.R. Prashith Kekuda, Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

Department of Microbiology, S.R.N.M.N College of Applied Sciences, N.E.S campus, Balraj Urs road, Shivamogga-577201, Karnataka, India

References

1. Mittal PK, Subbarao SK. Prospects of using herbal products in the control of mosquito vector. ICMR Bulletin 2003; 33(1):1-10.
2. Chowdhury N, Laskar S, Chandra G. Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complementary Altern Med 2008; 8:62.
3. Boussaada O, Kamel MBH, Ammar S, Haouas D, Mighri Z, Helal AN. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. Bulletin of Insectology 2008; 61(2):283-289.
4. Vinayaka KS, Kumar SVP, Kekuda PTR, Krishnamurthy YL, Mallikarjun N, Swathi D. Proximate composition, antioxidant, anthelmintic and insecticidal activity of a macrolichen Ramalina conduplicans Vain. (Ramalinaceae). Eur J Appl Sci 2009; 1(3):40-46.
5. Ghosh A, Chowdhury N, Chandra G. Plant extracts as potential mosquito larvicides. Indian J Med Res 2012; 135(5):581–598.
6. Overgaard HJ, Sirisopa P, Mikolo B, Malterud KE, Wangensteen H, Zou Y, Paulsen BS, Massamba D, Duchon S, Corbel V, Chandre F. Insecticidal activities of bark, leaf and seed extracts of Zanthoxylum heitzii against the African malaria vector Anopheles gambiae. Molecules 2014; 19:21276-21290.
7. Mohammed BR, Abdulsalam YM, Deeni YY. Insecticide resistance to Anopheles spp. mosquitoes (Diptera: Culicidae) in Nigeria: A review. International Journal of Mosquito Research 2015; 2(3):56-63.
8. Dinesh DS, Kumari S, Pandit V, Kumar J, Kumari N, Kumar P, Hassan F, Kumar V, Das P. Insecticidal effect of plant extracts on Phlebotomus argentipes (Diptera: Psychodidae) in Bihar, India. Indian J Med Res 2015; 142:95-100.
9. Kumuda SS, Mohankumar TK, Prathibha KP, Vijayan VA. Efficacy of plant extracts against the larvae of filariasis vector, Culex quinquefasciatus Say and the dengue vector Aedes aegypti Linn at Mysore. Int J Curr Microbiol Appl Sci 2015; 4(6):242-249.
10. Hunter P. Challenges and options for disease vector control. EMBO Rep 2016; 17(10):1370-1373.
11. Hikal WM, Boeschen RS, Said-Al Ahl HAH. Botanical insecticide as simple extractives for pest control. Cogent Biol 2017; 31404274.
12. Venkadachalam R, Subramaniyan V, Palani M, Subramaniyan M, Srinivasan P, Raji M. Mosquito larvicidal and pupicidal activity of Tephrosia purpurea Linn. (Family: Fabaceae) and Bacillus sphaericus against, dengue vector, Aedes aegypti. Pharmacogn J 2017; 9(6):737-742.
13. Mbatchou VC, Tchouassi DP, Dickson RA, Annan K, Mensah AY, Amponsah IK, Jacob JW, Cheseto X, Habtemariam S, Torto B. Mosquito larvicidal activity of Cassia tora seed extract and its key anthraquinones aurantio-obtusin and obtusin. Parasites Vectors 2017; 10:562.
14. Sachin MB, Mahalakshmi SN, Kekuda PTR. Insecticidal efficacy of lichens and their metabolites- A mini review. J Appl Pharm Sci 2018; 8(10):159-164.
15. Okia M, Hoel DF, Kirunda J, Rwakimari JB, Mpeka B, Ambayo D, Price A, Oguttu DW, Okui AP, Govere J. Insecticide resistance status of the malaria mosquitoes: Anopheles gambiae and Anopheles funestus in eastern and northern Uganda. Malar J 2018; 17(1):157.
16. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12(4):564-582.
17. Khan R, Islam B, Akram M, Shakil S, Ahmad A, Ali M, Siddiqui M, Khan AU. Antimicrobial activity of five herbal extracts against multidrug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules 2009; 14:586-597.
18. Al-Jiffri O, El-Sayed ZMF, Al-Sharif FM. Urinary tract infection with Esherichia coli and antibacterial activity of some plants extracts. Int J Microbiol Res 2011; 2(1):1-7.
19. Mishra MP, Padhy RN. In vitro antibacterial efficacy of 21 Indian timber-yielding plants against multidrug-resistant bacteria causing urinary tract infection. Osong Public Health Res Perspect 2013; 4(6):347-357.
20. Pavithra GM, Siddiqua S, Naik AS, Kekuda PTR, Vinayaka KS. Antioxidant and antimicrobial activity of flowers of Wendlandia thyrsoidea, Olea dioica, Lagerstroemia speciosa and Bombax malabaricum. J Appl Pharm Sci 2013; 3(6):114-120.
21. Ranjitha MC, Akarsh S, Kekuda PTR, Darshini SM, Vidya P. Antibacterial activity of some plants of Karnataka, India. J Pharmacogn Phytochem 2016; 5(4):95-99.
22. Jensen RH. Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment. Dan Med J 2016; 63(10): B5288.
23. Jensen RH, Hagen F, Astvad KM, Tyron A, Meis JF, Arendrup MC. Azole-resistant Aspergillus fumigatus in Denmark: a laboratory-based study on resistance mechanisms and genotypes. Clin Microbiol Infect 2016; 22(6):570.e1-570.e9.
24. Wiederhold NP. Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 2017; 10: 249-259.
25. Rupp S, Weber RW, Rieger D, Detzel P, Hahn M. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front Microbiol 2017; 7:2075.
26. Sancheti A, Ju LK. Eco-friendly rhamnolipid based fungicides for protection of soybeans from Phytophthora sojae. Pest Manag Sci 2019; doi: 10.1002/ps.5418.
27. Chen J, Shen Y, Chen C, Wan C. Inhibition of key citrus postharvest fungal strains by plant extracts in vitro and in vivo: a review. Plants 2019; 8:26.
28. Gulcin I, Topal F, Sarikaya SBO, Bursal E, Bilsel G, Goren AC. Polyphenol contents and antioxidant properties of Medlar (Mespilus germanica L.). Rec Nat Prod 2011; 5(3):158-175.
29. Moukette BM, Pieme CA, Biapa PC, Njimou JR, Moor VJ, Stoller M, Bravi M, Ngogang JY. Phenolic content of Hypodaphnis zenkeri and its antioxidant effects against Fenton Reactions' mediated oxidative injuries on liver homogenate. Antioxidants (Basel) 2014; 3(4):866-889.
30. Moukette MB, Anatole CP, Biapa NCP, Njimou JR, Ngogang JY. Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis. Toxicol Rep 2015; 2: 792-805.
31. Tan JB, Lim YY. Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem 2015; 172:814-822.
32. de Dicastillo LC, Bustos F, Valenzuela X, López-Carballo G, Vilariño JM, Galotto MJ. Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. Food Res Int 2017; 102:119-128.
33. Silva KDRR, Sirasa MSF. Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem 2018; 238:203-208.
34. Kotresha K, Harihar NS. Uses of Cochlospermum religiosum (L.) Alston [Cochlospermaceae]: An ethnomedicinal plant. Indian Forester 2011; 137(3):393-394.
35. Yarra R, Aileni M, Kokkirala VR, Umate P, Vemunoori AK, Abbagani S. Micropropagation of Cochlospermum religiosum (L.) Alston. Tree and Forestry Science and Biotechnology 2011; 5:49-52.
36. Pandhure N, Gaikwad M, Waghmare V. In vitro tissue culture studies on Cochlospermum religiosum (Linn.). Trends Biotechnol Res 2012; 1(1):56-59.
37. Gahane RN, Kogje KK. Effect of pre-treatments for enhancing the germination of Adansonia digitata L. and Cochlospermum religiosum L. Indian Forester 2013; 139(7):648-651.
38. Rao SP, Neelima P, Lakshminarayana K, Kumar AO. Important plant-based non-timber forest products of west Godavari district, Andhra Pradesh, India. J Nat Prod Plant Resour 2014; 4(2):33-42.
39. Mishra T. Some potential folk herbal medicines for veterinary practices. European Journal of Pharmaceutical and Medical Research 2016; 3(8):347-352.
40. Khatoon S, Irshad S. Bark drugs as Indian ethnomedicine – Modern therapeutics and future prospects. In: Indian Ethnobotany: Emerging trends, Jain AK (Editor), Scientific Publisher, Jodhpur, India, 2016, Pp 87-98.
41. Chandrashekhar K. Critical review on notable resinous substance (Niryasa) used as botanical in Ayurveda. World Journal of Pharmaceutical and Medical Research 2018; 4(10):60-66.
42. Johnson-Fulton SB, Watson LE. Comparing medicinal uses of Cochlospermaceae throughout its geographic range with insights from molecular phylogenetics. Diversity 2018; 10: 123.
43. Patel RS, Chaudhari RP, Panchal P, Dalicha SB. Observation of some valuable trees with their medicinal uses and chemical properties from Gandhinagar, Gujarat, India . The World Journal of Engineering and Applied Science 2019; 5(1): 1-20.
44. Bhat GK. Flora of South Kanara. Akriti Prints, Mangalore, India, 2014.
45. Ankith GN, Rajesh MR, Karthik KN, Avinash HC, Kekuda PTR, Vinayaka KS. Antibacterial and antifungal activity of three Ramalina species. J Drug Delivery Ther 2017; 7(5):27-32.
46. Raghavendra HL, Kekuda PTR, Akarsh S, Ranjitha MC, Ashwini HS. Phytochemical analysis, antimicrobial and antioxidant activities of different parts of Pleocaulus sessilis (Nees) Bremek (Acanthaceae). Int J Green Pharm 2017; 11(2):98-107.
47. Das NG, Goswami D, Rabha B. Preliminary evaluation of mosquito larvicidal efficacy of plant extracts. J Vect Borne Dis 2007; 44:145–148.
48. Kweka EJ, Lyatuu EE, Mboya MA, Mwang'onde BJ, Mahande AM. Oviposition deterrence induced by Ocimum kilimandscharicum and Ocimum suave extracts to gravid Anopheles gambiae s.s (Diptera: Culicidae) in laboratory. J Glob Infect Dis 2010; 2(3):242–245.
49. Reegan AD, Gandhi MR, Paulraj MG, Ignacimuthu S. Ovicidal and oviposition deterrent activities of medicinal plant extracts against Aedes aegypti L. and Culex quinquefasciatus Say mosquitoes (Diptera: Culicidae). Osong Public Health Res Perspect 2014; 6(1):64-69.
50. Benelli R, Zeller H, Van Bortel W. A review of the vector management methods to prevent and control outbreaks of West Nile virus infection and the challenge for Europe. Parasites Vectors 2014; 7:323.
51. Rawani A, Ghosh A, Chandra G. Mosquito larvicidal potential of four common medicinal plants of India. Indian J Med Res 2014; 140(1):102–108.
52. Mangalat S, Narayanan V, Janardhanan M. Herbal larvicides to control mosquito larvae, a preliminary study. Nat Prod Rad 2014; 3(1):24-26.
53. Perumalsamy H, Jang MJ, Kim JR, Kadarkarai M, Ahn JY. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasites Vectors 2015; 8:237.
54. Benelli G, Jeffries CL, Walker T. Biological control of mosquito vectors: Past, present, and future. Insects 2016; 7:52.
55. Kim SI, Ahn YJ. Larvicidal activity of lignans and alkaloid identified in Zanthoxylum piperitum bark toward insecticide-susceptible and wild Culex pipiens pallens and Aedes aegypti. Parasites Vectors 2017; 10(1):221.
56. Abdallah EM. Plants: An alternative source for antimicrobials. J Appl Pharm Sci 2011; 1(6):16-20.
57. Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 2012; 7(8): 979-990.
58. Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials-a review. Plants 2017; 6:16.
59. Panda SK, Mohanta YK, Padhi L, Park Y, Mohanta TK, Bae H. Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules 2016; 21:293.
60. Zingare AK. Antimicrobial activity of Adansonia digitata and Cochlospermum religiosum extracts against E. coli and S. aureus isolates. International Journal of Researches in Biosciences, Agriculture and Technology 2015; Special Issue 6:11-14.
61. Goud SPP, Rama Murthy SK, Pullaiah T, Babu GVAK. Screening for antibacterial and antifungal activity of some medicinal plants of Nallamalais, Andhra Pradesh, India. J Econ Taxon Bot 2002; 26(3):677-684.
62. Bai JA, Rai RV, Samaga PV. Evaluation of the antimicrobial activity of three medicinal plants of South India. Malays J Microbiol 2011; 7(1):14-18.
63. Ponnamma P, Manasa G, Sudarshana MS, Murali M, Mahendra C. In vitro antioxidant, antibacterial and phytochemical screening of Cochlospermum religiosum (L.) Alston - A potent medicinal plant. Tropical Plant Research 2017; 4(1):13-19.
64. Kawde AB, Batra RJ, Weginwar RG, Akkewar DM, Gond GS, Aparna Y. Preliminary phytochemical screening and bioevaluatuion studies of stem bark of Cochlospermum gossypium. International Journal of Researches in Biosciences, Agriculture and Technology 2015; Special issue 1:199-206.
65. Pumpaluk P, Sritularak B, Likhitwitayawuid K, Lapirattanakul J. Antibacterial effect of herbal plants against three cariogenic microorganisms. M Dent J 2017; 37(1):71-80.
66. Anibal PC, de Cássia Orlandi Sardi J, Peixoto IT, de Carvalho Moraes JJ, Höfling JF. Conventional and alternative antifungal therapies to oral candidiasis. Braz J Microbiol 2010; 41(4):824-831.
67. Yoon MY, Cha B, Kim JC. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J 2013; 29(1):1-9.
68. Ngadze E. In vitro and greenhouse evaluation of botanical extracts for antifungal activity against Phythopthora infestans. J Biopest 2014; 7(2):199-204.
69. Ramaiah AK, Garampalli RH. In vitro antifungal activity of some plant extracts against Fusarium oxysporum f. sp. lycopersici. Asian J Plant Sci Res 2015; 5(1):22-27.
70. Kekuda PTR, Akarsh S, Nawaz NAS, Ranjitha MC, Darshini SM, Vidya P. In vitro antifungal activity of some plants against Bipolaris sorokiniana (Sacc.) Shoem. Int J Curr Microbiol Appl Sci 2016; 5(6):331-337.
71. Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA, Khoder G, Noreddin AM. Plants' natural products as alternative promising anti-Candida drugs. Pharmacogn Rev 2017; 11(22): 104-122.
72. Buch H, Arya A. Antifungal activity of selected plant extracts against three pathogenic fungi of Gossypium herbaceum. Current Research in Environmental and Applied Mycology 2017; 7(2):103–108.
73. Rajurkar NS, Hande SM. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J Pharm Sci 2011; 73(2):146–151.
74. Kekuda PTR, Akarsh S, Darshini SM, Prafulla D, Raghavendra HL. Antiradical and antimicrobial activity of Atylosia lineata Wt. and Arn. Sci Technol Arts Res J 2015; 4(3):180-183.
75. Noreen H, Semmar N, Farman M, McCullagh JSO. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac J Trop Med 2017; 10(8):792-801.
76. Zhou JX, Braun MS, Wetterauer P, Wetterauer B, Wink M. Antioxidant, cytotoxic, and antimicrobial activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. extracts. Medicines (Basel) 2019; 6(2):E43.
77. Hongsing P, Palanuvej C, Ruangrungsi N. Chemical compositions and biological activities of selected exudate gums. J Chem Pharm Res 2012; 4(9):4174-4180.
78. Ahmed AS, McGaw LJ, Elgorashi EE, Naidoo V, Eloff JN. Polarity of extracts and fractions of four Combretum (Combretaceae) species used to treat infections and gastrointestinal disorders in southern African traditional medicine has a major effect on different relevant in vitro activities. J Ethnopharmacol 2014; 154(2): 339-350.
79. Sandeepa KH, Harsha TS, Prashanth M, Raghavendra HL. In vitro antioxidant activity of Anaphalis lawii (Hook. f) Gamble and Helichrysum buddleioides DC - a comparative study. J Biosci Agric Res 2017; 12(2):1064-1073.
80. Chung Y, Chien C, Teng K, Chou S. Antioxidative and mutagenic properties of Zanthoxylum ailanthoides Sieb & zucc. Food Chem 2006; 97: 418-425.
81. Bhalodia NR, Nariya PB, Acharya RN, Shukla VJ. In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. Ayu 2013; 34(2):209-214.
82. Nariya PB, Bhalodia NR, Shukla VJ, Acharya R, Nariya MB. In vitro evaluation of antioxidant activity of Cordia dichotoma (Forst f.) bark. Ayu 2013; 34(1):124-128.
83. Ravishankar K, Kiranmayi GVN, Prasad RY. Comparative in vitro antioxidant activities of ethanolic extract, ethyl acetate extract (EAE), and hexane extracts (HE) of Tecoma gaudichaudi flowers. Int J Green Pharm 2018; 12(S1):S214-S219.
84. Leterme P, Buldgen A, Estrada F, Londono AM. Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chem 2006; 95: 644-652.
85. Dileep N, Rakesh KN, Junaid S, Kumar RKA, Kekuda PTR, Vijayananda BN. Elemental analysis, anticariogenic, insecticidal and anthelmintic activity of Anaphalis lawii (Hook.f.) Gamble. Res J Pharm Tech 2013; 6(5): 569-574.
86. Sadia H, Ahmad M, Sultana S, Abdullah AZ, Teong LK, Zafari M, Bano A. Nutrient and mineral assessment of edible wild fig and mulberry fruits. Fruits 2014; 69(2):159-166.
87. Cristina HMR, Gabriel HM, Petru N, Radu S, Adina N, Ducu S. The monitoring of mineral elements content in fruit purchased in supermarkets and food markets in Timisoara, Romania. Annals of Agricultural and Environmental Medicine 2014; 21(1): 98–105.
88. Sudhakaran A, Nair GA. Nutritional evaluation of fruits of Gynochthodes umbellata (L.) Razafim. & B. Bremer–An underutilized edible fruit plant. Pharmacogn J 2016; 8(1):72-76.
Statistics
8 Views | 8 Downloads
How to Cite
Swathi, B., Smruthi, B., Saima, B., & Prashith Kekuda, T. (2019). Insecticidal, antimicrobial and antioxidant activity and elemental analysis of Cochlospermum religiosum (L.) Alston (Bixaceae). Journal of Drug Delivery and Therapeutics, 9(2-s), 422-428. https://doi.org/10.22270/jddt.v9i2-s.2551