Inulin: A promising carrier for controlled and targeted drug delivery system

  • Wasim Akram School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011
  • Ramakant Joshi School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011
  • Navneet Garud School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011

Abstract

The delivery of a drug to the preferred site of action is referred to as drug targeting. The benefits of drug targeting are a reproducible and controlled release rate of the therapeutic compound, which forestalls overdose. Due to the potential to treat colonic diseases with minimum side effects, colon targeting has become of high interest over the last decades. Inulin was investigated for its potential as encapsulation material regarding its enzymatic degradability and its drug release behaviour. Inulin is a polysaccharide with a widespread range of therapeutic uses such as a carrier in a drug delivery vehicle, as a diagnostic/analytical tool or as a dietary fibre with additional health benefits. In the main, much research has focused on inulin as a drug delivery carrier for colon-specific drug delivery. The justification for this is its potential to survive in the stomach’s acidic environment. This unique stability and strength are utilized in many ways to deliver drugs safely to the colon, where they can be easily absorbed through the gut epithelium into the blood. There are also some proofs that inulin’s prebiotic features also lead to health benefits, mainly for patients with inflammatory bowel disease or in the prevention of colonic cancer. Inulin based hydrodynamic research will be useful to discover the potential of inulin.

Downloads

Download data is not yet available.

Author Biographies

Wasim Akram, School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011

School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011

Ramakant Joshi, School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011

School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011

Navneet Garud, School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011

School of studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, M.P-474011

References

1. Yun YH, Lee BK, Park K. Controlled drug delivery: historical perspective for the next generation. Journal of Controlled Release. 2015; 219:2-7.
2. Damian F, Van Den Mooter G, Samyn C, Kinget R. In vitro biodegradation study of acetyl and methyl inulins by Bifidobacteria and inulinase. European journal of pharmaceutics and biopharmaceutics. 1999; 47(3):275-82.
3. Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC. The use of polysaccharides to target drugs to the colon. Carbohydrate polymers. 2002; 48(3):219-31.
4. Zhang L, Sang Y, Feng J, Li Z, Zhao A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. Journal of drug targeting. 2016; 24(7):579-89.
5. López-Molina D, Navarro-Martínez MD, Rojas-Melgarejo F, Hiner AN, Chazarra S, Rodríguez-López JN. Molecular properties and prebiotic effect of inulin obtained from artichoke (Cynara scolymus L.). Phytochemistry. 2005; 66(12):1476-84.
6. Apolinario AC, de Lima Damasceno BP, de Macedo Beltrao NE, Pessoa A, Converti A, da Silva JA. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate polymers. 2014; 101:368-78.
7. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydrate polymers. 2015; 134:418-28.
8. Petrovsky N. Inulin-a versatile polysaccharide: use as food chemical and pharmaceutical agent. Journal of Excipients and Food Chemicals. 2010; 1(3):27-50.
9. Hartzell AL, Maldonado-Gómez MX, Hutkins RW, Rose DJ. Synthesis and in vitro digestion and fermentation of acylated inulin. Bioactive Carbohydrates and Dietary Fibre. 2013; 1(1):81-8.
10. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Frontiers in microbiology. 2016; 7:979.
11. Stevens CV, Meriggi A, Booten K. Chemical modification of inulin, a valuable renewable resource, and its industrial applications. Biomacromolecules. 2001; 2(1):1-6.
12. Kelly G. Inulin-type prebiotics--a review: part 1. Alternative Medicine Review. 2008; 13(4).
13. Jain AK, Sood V, Bora M, Vasita R, Katti DS. Electrosprayed inulin microparticles for microbiota triggered targeting of colon. Carbohydrate polymers. 2014; 112:225-34.
14. Raninen K, Lappi J, Mykkänen H, Poutanen K. Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose. Nutrition reviews. 2011; 69(1):9-21.
15. Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate polymers. 2015; 130:405-19.
16. Carlson JL, Erickson JM, Hess JM, Gould TJ, Slavin JL. Prebiotic Dietary Fiber and Gut Health: Comparing the in Vitro Fermentations of Beta-Glucan, Inulin and Xylooligosaccharide. Nutrients. 2017; 9(12):1361.
17. Smecuol E, Hwang HJ, Sugai E, Corso L, Chernavsky AC, Bellavite FP, Gonzalez A, Vodanovich F, Moreno ML, Vazquez H, Lozano G. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. Journal of clinical gastroenterology. 2013; 47(2):139-47.
18. López-Molina D, Chazarra S, How CW, Pruidze N, Navarro-Perán E, García-Cánovas F, García-Ruiz PA, Rojas-Melgarejo F, Rodríguez-López JN. Cinnamate of inulin as a vehicle for delivery of colonic drugs. International journal of pharmaceutics. 2015; 479(1):96-102.
19. Goudberg A. The utilization of inulin in the metabolism for nutritional cures. Z. Exp. Path. Ther. 1913; 13:310-25.
20. Phelps CF. The physical properties of inulin solutions. Biochemical Journal. 1965; 95(1):41.
21. Looijer–Van Langen MA, Dieleman LA. Prebiotics in chronic intestinal inflammation. Inflammatory bowel diseases. 2008; 15(3):454-62.
22. Flamm G, Glinsmann W, Kritchevsky D, Prosky L, Roberfroid M. Inulin and oligofructose as dietary fiber: a review of the evidence. Critical reviews in food science and nutrition. 2001; 41(5):353-62.
23. Castelli F, Sarpietro MG, Micieli D, Ottimo S, Pitarresi G, Tripodo G, Carlisi B, Giammona G. Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect. European Journal of Pharmaceutical Sciences. 2008; 35(1-2):76-85.
24. Akhgari A, Farahmand F, Garekani HA, Sadeghi F, Vandamme TF. Permeability and swelling studies on free films containing inulin in combination with different polymethacrylates aimed for colonic drug delivery. European journal of pharmaceutical sciences. 2006; 28(4):307-14.
25. Kleberg K, Jacobsen J, Müllertz A. Characterising the behaviour of poorly water soluble drugs in the intestine: application of biorelevant media for solubility, dissolution and transport studies. Journal of Pharmacy and Pharmacology. 2010; 62(11):1656-68.
26. Fares MM, Khanfar M. Inulin and poly (acrylic acid) grafted inulin for dissolution enhancement and preliminary controlled release of poorly water-soluble Irbesartan drug. International journal of pharmaceutics. 2011; 410(1-2):206-11.
27. Dan A, Ghosh S, Moulik SP. Physicochemical studies on the biopolymer inulin: A critical evaluation of its self‐aggregation, aggregate‐morphology, interaction with water, and thermal stability. Biopolymers: Original Research on Biomolecules. 2009; 91(9):687-99.
28. Dan A, Ghosh S, Moulik SP. Physicochemistry of the interaction between inulin and alkyltrimethylammonium bromides in aqueous medium and the formed coacervates. The Journal of Physical Chemistry B. 2009; 113(25):8505-13.
29. Naskar B, Ghosh S, Nagadome S, Sugihara G, Moulik SP. Behavior of the amphiphile CHAPS alone and in combination with the biopolymer inulin in water and isopropanol–water media. Langmuir. 2011; 27(15):9148-59.
30. Ravi V, Kumar TP. Influence of natural polymer coating on novel colon targeting drug delivery system. Journal of Materials Science: Materials in Medicine. 2008; 19(5):2131-6.
31. Lacorn M, Goerke M, Claus R. Inulin‐coated butyrate increases ileal MCT1 expression and affects mucosal morphology in the porcine ileum by reduced apoptosis. Journal of animal physiology and animal nutrition. 2010; 94(5):670-6.
32. Jain A, Gupta Y, Jain SK. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci. 2007; 10(1):86-128.
33. Tripodo G, Pitarresi G, Cavallaro G, Palumbo FS, Giammona G. Controlled release of IgG by novel UV induced polysaccharide/poly (amino acid) hydrogels. Macromolecular bioscience. 2009; 9(4):393-401.
34. Tripodo G, Pitarresi G, Palumbo FS, Craparo EF, Giammona G. UV‐photocrosslinking of inulin derivatives to produce hydrogels for drug delivery application. Macromolecular bioscience. 2005; 5(11):1074-84.
35. Huang C, Lu B, Fan YH, Zhang L, Jiang N, Zhang S, Meng LN. Muscovite is protective against non-steroidal anti-inflammatory drug-induced small bowel injury. World Journal of Gastroenterology: WJG. 2014; 20(31):11012.
36. Mandracchia D, Denora N, Franco M, Pitarresi G, Giammona G, Trapani G. New biodegradable hydrogels based on inulin and α, β-polyaspartylhydrazide designed for colonic drug delivery: in vitro release of glutathione and oxytocin. Journal of Biomaterials Science, Polymer Edition. 2011; 22(1-3):313-28.
37. Pitarresi G, Tripodo G, Calabrese R, Craparo EF, Licciardi M, Giammona G. Hydrogels for Potential Colon Drug Release by Thiol‐ene Conjugate Addition of a New Inulin Derivative. Macromolecular bioscience. 2008; 8(10):891-902.
38. Visser MR, Baert L, van’t Klooster G, Schueller L, Geldof M, Vanwelkenhuysen I, De Kock H, De Meyer S, Frijlink HW, Rosier J, Hinrichs WL. Inulin solid dispersion technology to improve the absorption of the BCS Class IV drug TMC240. European Journal of Pharmaceutics and Biopharmaceutics. 2010; 74(2):233-8.
39. Srinarong P, Hämäläinen S, Visser MR, Hinrichs WL, Ketolainen J, Frijlink HW. Surface‐active derivative of inulin (Inutec® SP1) is a superior carrier for solid dispersions with a high drug load. Journal of pharmaceutical sciences. 2011; 100(6):2333-42.
40. Van Drooge DJ, Hinrichs WL, Wegman KA, Visser MR, Eissens AC, Frijlink HW. Solid dispersions based on inulin for the stabilisation and formulation of Δ9-tetrahydrocannabinol. European journal of pharmaceutical sciences. 2004; 21(4):511-8.
41. Eriksson HJ, Verweij WR, Poelstra K, Hinrichs WL, de Jong GJ, Somsen GW, Frijlink HW. Investigations into the stabilisation of drugs by sugar glasses: II: Delivery of an inulin-stabilised alkaline phosphatase in the intestinal lumen via the oral route. International journal of pharmaceutics. 2003; 257(1-2):273-81.
Statistics
138 Views | 133 Downloads
How to Cite
Akram, W., Joshi, R., & Garud, N. (2019). Inulin: A promising carrier for controlled and targeted drug delivery system. Journal of Drug Delivery and Therapeutics, 9(1-s), 437-441. https://doi.org/10.22270/jddt.v9i1-s.2398