Chitosan anchored nanoparticles for breast cancer: preparation and evaluation: part-I

  • Rajkumari Thagele Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India
  • Archana Bagre Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India
  • Mohan Lal Kori Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India


The objective of present research work was to develop methotrexate loaded chitosan anchored shell nanoparticles for drug delivery in breast cancer. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate (STPP). The optimized nanoparticles were characterized for particle size and polydispersity index (PDI) revealed particle size were found to be between 57.08 nm to169.5 nm and PDI 0.252 to 0.639 respectively. The results signpost that stirring speed during ionic gelation reaction was also decisive parameters for the size of the nanoparticles obtained. Further characterization involved to show polymer-drug interaction was FTIR and DSC. This paper grants a revision of the physical factors elaborate in attaining nanoparticles in order to regulate the particle size of polymeric nanoparticles made from chitosan, without any surplus chemical treatment.

Keywords: Breast cancer, Nanoparticles, Chitosan, Methotrexate


Download data is not yet available.

Author Biographies

Rajkumari Thagele, Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India

Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India

Archana Bagre, Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India

Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India

Mohan Lal Kori, Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India

Vedica College of B. Pharmacy, RKDF University, Gandhi Nagar, Bhopal (M.P.) – India


1. Phulzalke SB, Kate BA, Bagade MY, Shete RV, Formulation Development and Evaluation of Orodispersible Tablets of Quetiapine Fumarate by Sublimation Method, Asian Journal of Biomedical and Pharmaceutical Sciences, 2016; 6(57):22-31.
2. Min Li, Ge Li, Lu Tang, Lu Xingyan, Jun Chen, Li Qingnan, Guozhu Yang, Huanhuan Jia, Wu Yu’e, Yu Zhang, Tumor Necrosis Factor (TNF-Α)-Induced Upregulation of Cartilage Degradation-Associated Genes by Chondrocytes Requires Epithelial Sodium Channel Activity Asian J Biomed Pharmaceut Sci 2017; 7(6).
3. Kumari A, Yadav SK, Yadav SC, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids and Surfaces B: Biointerfaces; 2010; 72:1–18.
4. Tripathi CB, Parashar P, Arya M, Singh m, Kanoujia J, Kaithwas G, Saraf SA, QbD-based development of α-linolenic acid potentiated nanoemulsion for targeted delivery of doxorubicin in DMBA-induced mammary gland carcinoma: in vitro and in vivo evaluation, Drug Delivery and Translational Research; 2018,8(5):1313–1334.
5. Heineman TE, Sabbas A, Delamerced MS, Y. Chiu, M. Smith, Parashar B, Wernicke AG, Impact of a large breast separation on radiation dose delivery to the ipsilateral lung as result of respiratory motion quantified using free breathing and 4D CT-based planning in patients with locally advanced breast cancers: A potential for adverse clinical implications, Journal of CANCER Research and Therapeutics;2013; 9(1):154-160.
6. Krishnaveni B. Chitosan: A review on its varied novel therapeutic and industrial applications. Journal of Drug Delivery and Therapeutics, 2016; 6(6):70-79.
7. Kaur M., Bhatia A., Sethi D., Kaur G., Vig K. Hypoglycemic potential of probiotic DNA loaded chitosan nanoparticles: an in vivo study. Journal of Drug Delivery and Therapeutics, 2017; 7(2):70-76.
8. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, Wang SL, Recent advances of chitosan nanoparticles as drug carriers, Int. J. Nano.; 2011; 6:765–774.
9. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S, Chitosan microspheres as a potential carrier for drugs, Int. J. Pharma.;2004; 274:1–33.
10. Singla AK, Chawla M, J. Pharm. Pharmacol; 2001; 53:1067.
11. Kong F, Liu G, Sun B, S. Zhou, A. Zuo, R. Zhao, D. Liang, Phosphorylatable short peptide conjugated low molecular weight chitosan for efficient siRNA delivery and target gene silencing, Int. J. Pharm.; 2012; 422:445–453.
12. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso ML, Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers,J. Appl. Polym. Sci.; 1997; 63:125–132.
13. Csaba N, Koping-Hoggard M, Alonso MJ, Ionically crosslinked chitosan/ tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery,Int. J. Pharm.; 2009; 382:205–214.
14. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan – a versatile semisynthetic polymer in biomedical applications, Prog. Polym. Sci.; 2011; 36:981–1014.
15. H. Wang, Y. Zhao, H. Wang, J. Gong, H. He, M.C. Shin, V.C. Yang, Y. Huang, Lowmolecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer, J. Control. Rel.; 2014; 192:47-56.
16. H. Hong, Y. Zhang, J. Sun, W. Cai, Molecular imaging and therapy of cancer with radiolabeled nanoparticles, Nano Today; 2004; 4(5):399-413.
17. Nikita Sehgal, Kriti Soni, Navika Gupta, Kanchan Kohli, Microorganism Assisted Synthesis of Gold Nanoparticles: A Review Asian J Biomed Pharmaceut Sci. 2018; 8(64).
18. P. Couvreur, C. Vauthier, Nanotechnology: intelligent design to treat complex disease, Pharm. Res.; 2006; 23:1417-1450.
19. M.D. DeMario and M.J. Ratain. Oral chemotherapy: rationale and future directions, J. Clin.Oncol.; 1998; 16:2557–2567.
20. A. Sparreboom, M.J. de Jonge, J.Verweij, The use of oral cytotoxic and cytostatic drugs in cancer treatment, Eur. J. Cancer.; 2002, 38(1):18–22.
21. Y. Wang, X. Yang, J. Yang, Y. Wang, R. Chen, J. Wu, Y. Liu, N. Zhang, Selfassembled nanoparticles of methotrexate conjugated O-carboxymethyl chitosan: preparation, characterization and drug release behavior in-vitro, Carbohydr. Polym.; 2011; 86:1665-1670.
22. C. Gao, T. Liu, Y. Dang, Z. Yu, W. Wang, J. Guo, X. Zhang, G. He, H. Zheng, Y. YX. Kong, pH/redox responsive core cross-linked nanoparticles from thiolated carboxymethyl chitosan for in vitro release study of methotrexate, Carbohydr. Polym.; 2014, 964-970.
23. J. Lu, Y. Pang, F. Xie, H. Guo, Y. Li, Z. Yang, X. Wang, Synthesis and in vitro/ in vivo evaluation of 99mTc-labeled folate conjugates for folate receptor imaging, Nucl. Med. Biol.; 2011; 38(4):557-565.
24. W. Fan, W. Yan, Z. Xu and H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces; 2012; 90:21–27.
25. L. Casettari, M. Cespi, G.F. Palmieri and G. Bonacucina, Characterization of the interaction between chitosan and inorganic sodium phosphates by means of rheological and optical microscopy studies. Carbohyd. Pol.; 2013; 91(2):597–602.
26. D.M. Pickup, R.J. Newport, E. R. Barney, J. Y. Kim, S. P. Valappil and J. C. Knowles, Characterisation of phosphate coacervates for potential biomedical applications, J Biomaterials Appli.;2014; 28(8):1226–1234.
27. M. Muller, M. Brunner, R. Schmid, M. Robert Mader, J. Bockenheimer, G. Steger, G. Steiner, B., Eichler, B. B. Daum, Interstitial Methotrexate Kinetics in Primary Breast Cancer. Advances in Brief Cancer Res.; 1998; 58:2982-2985.
28. A. Jain and S. K. Jain, In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors, Europ.J.Pharm.Sci.;2008; 35(5):404-416.
29. R.S Nair, Preeti Bisht, Sarangi TK, Insights on Cancer Preventive Approaches Using Plant Based Extracts Asian J Biomed Pharmaceut Sci 2018; 8(65).
30. B. G. Gowda, Mallappa M, R.T. Mahesh, C. C. Hadimani, Spectroscopic and Viscositic Studies on the Interaction of Solifenacin Succinate with DNA Asian Journal of Biomedical and Pharmaceutical Sciences; 2014; 4(35):44-48.
292 Views | 310 Downloads
How to Cite
Thagele R, Bagre A, Kori ML. Chitosan anchored nanoparticles for breast cancer: preparation and evaluation: part-I. JDDT [Internet]. 15Jan.2019 [cited 9Jul.2020];9(1):1-. Available from: