Combined use of DSC, TGA, XDR and NIR in the compatibility study of preformulation mixtures for the development of 10 mg tablets of Rupatadine Fumarate

  • Castillo Henríquez Luis Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), The Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.
  • Madrigal Redondo German Doctor in Pharmacy, Magister in Intellectual Property, Magister Scientae in Analysis and Quality Control of Medications, Associate Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.
  • Vargas Zúñiga Rolando Doctor in Pharmacy, Master in Intellectual Property, Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San José, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.
  • Carazo Berrocal Gustavo Doctor in Pharmacy, Magister Scientae in Analysis and Quality Control of Medications, Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

Abstract

It is essential to guarantee physico-chemical compatibility between the active pharmaceutical ingredient (API) and the components that are planned to be used in the development of a pharmaceutical formulation. A successful compatibility study allows to distinguish between the excipients that can be used and those that may represent a risk in the quality, safety and efficacy of the medication. The present study focuses on the identification of possible incompatibilities between Rupatadine fumarate and the excipients of three formulation prototypes for the development of API´s 10 mg tablets. Samples of each raw material, placebos and preformulation mixtures were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XDR) and infrared spectroscopy (IRS). The results obtained were analyzed and contrasted with the literature. Based on these, it is demonstrated that the excipients used along with the API do not generate problems in terms of compatibility, as there are no chemical changes in the drug.

Keywords: Active pharmaceutical ingredient, Chemical incompatibility, Compatibility study, Differential scanning calorimetry, Infrared spectroscopy, Preformulation powder mixtures, Rupatadine fumarate, Thermal analysis, Thermogravimetric analysis, X ray diffraction.

Downloads

Download data is not yet available.

Author Biographies

Castillo Henríquez Luis, Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), The Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

Doctor in Pharmacy, Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

Madrigal Redondo German, Doctor in Pharmacy, Magister in Intellectual Property, Magister Scientae in Analysis and Quality Control of Medications, Associate Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

Doctor in Pharmacy, Magister in Intellectual Property, Magister Scientae in Analysis and Quality Control of Medications, Associate Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

Vargas Zúñiga Rolando, Doctor in Pharmacy, Master in Intellectual Property, Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San José, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

Doctor in Pharmacy, Master in Intellectual Property, Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San José, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

Carazo Berrocal Gustavo, Doctor in Pharmacy, Magister Scientae in Analysis and Quality Control of Medications, Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

Doctor in Pharmacy, Magister Scientae in Analysis and Quality Control of Medications,  Professor and Researcher of the Biopharmacy and Pharmacokinetics Laboratory (LABIOFAR) of the Institute of Pharmaceutical Research (INIFAR), and the Pharmaceutical Physicochemistry Laboratory of the University of Costa Rica Pharmacy Faculty, Rodrigo Facio Campus, San Jose, Costa Rica, Postal Code 11501-2060, San José, Costa Rica.

References

1. Cardinal L. Technological Innovation in the Pharmaceutical Industry: The Use of Organizational Control in Managing Research and Development. Organization Science. 2001; 12(1):19-36.
2. Orfe, Y. (2014). Estudio de compatibilidad G0/excipientes mediante métodos isotérmicos y no isotérmicos. Santa Clara: Universidad Central "Marta Abreu" de las Villas.
3. Gibson M. Pharmaceutical preformulation and formulation. 2a ed. New York: Informa healthcare; 2009. 

4. Cabeza Zabala, L. Y., & Rojas Camargo, A. P. (2014). Estudio Comparativo de Tecnología DSC e Infrarrojo en la Identificación de Posibles Incompatibilidades en Mezclas Binarias Activo-Excipiente. Bogotá: Universidad de Ciencia y Tecnología.
5. Brown M, Antunes E, Glass B. DSC Screening of Potencial Prochlorperazine-excipiente Interactions in Preformulation Studies. Journal of Thermal Analysis and Calorimetry. 1999; 56:1317-1322.
6. Venkataram S, Khohlokwane M, Wallis S. Differential Scanning Calorimetry as a Quick Scanning Technique for Solid State Stability Studies. Drug Development and Industrial Pharmacy. 1995; 21(7):847-855.
7. Duarte F, Soares C, Accioly T, Nervo F. Compatibility study between chlorpropamide and excipients in their physical mixtures. Journal of Thermal Analysis and Calorimetry. 2009; 97(1):355-357.
8. Santamarta R. Caracterización de aleaciones base Ni-Ti producidas por solidificación rápida (melt-spinning), Palma: Universitat de les illesbalears, 2001.
9. Mazurek E, Winnicka K, Czajkowska A. Application of Diferential Scanning Calorimetry in Evaluation of Solid State Interactions in Tablets Containing Acetaminophen. Acta Poloniae Pharmaceutica. 2013; 70(5):787-793.
10. Uriach, J. & Compañía S.A. 8-cloro-11-(1-((5-metil-3-piridil)metil)-4-piperidiliden)6,11-dihidro-5H-benzo-(5,6)cicloheptal(1,2-b)piridina, fumarato. España; ES 2 087 818, 2017.
11. Zhuhai Jin Hong Pharmaceutical. One kind of fumaric rupatadine compounds, their synthesis and pharmaceutical compositions thereof. China; CN103804357 B, 2016.
12. AusPAR Rupafin Rupatadine iNova Pharmaceuticals (Australia) Pty Ltd PM-2009-03232-3-5.
13. Billah, M., Egan, R., Ganguly, A., Green, M. Discovery and Preliminary Pharmacology of Sch 37370, a Dual Antagonist of PAF and Histamine. In: Baumann W, ed. by. Platelet-Activating Factor and Structurally Related Alkyl Ether Lipids. 12th ed. New Jersey: AOCS Press; 1991. p. 1172-1174.
14. Castillo L, Madrigal G, Vargas R, Carazo G. Identification of Rupatadine fumarate polymorphic crystalline forms in pharmaceutical raw materials. Asian Journal of Science and Technology. 2018; 1(2):7482-7487.
15. Bio-Pharmaceutical. Rupatadine Fumarate A crystal form and preparation method thereof. China; CN106188008 A, 2016.
16. Pyramides G, Robinson J, Zito W. The combined use of DSC and TGA for the thermal analysis of atenolol tablets. Journal of Pharmaceutical & Biomedical Analysis. 1995; 13(2):103-110.
17. Djefel D, Makhlouf S. Experimental study of the thermal properties of composite stearic acid / coffee grounds / graphite for thermal energy storage. ACMA. 2014; 1-8.
18. Zeleznak K, Hoseney R. The Glass Transition in Starch. Cereal Chem. 1986; 64(2):121-124.
19. Brittain H, Blaine R. α-Monohydrate Phase in Lactose by DSC. TA. 2014;:1-3.
20. Dvrn B, Bhavani N, Haarika B. Formulation Development and in Vitro Evaluation of Orally Disintegrating Tablets Containing Rizatriptan Benzoate. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2015;6(1):300-311.
21. Fitzpatrick S, McCabe J, Petts C, Booth S. Effect of moisture on polyvinylpyrrolidone in accelerated stability testing. International Journal of Pharmaceutics. 2002; 246:143-151.
22. Haines P. Thermal Methods of Analysis. Dordrecht: Springer Netherlands; 1995.
23. Listiohadi Y, Hourigan J, Sleigh R, Steele R. Thermal analysis of amorphous lactose and α-lactose monohydrate. Dairy Science and Technology. 2008; 89(1):43-67.
24. Ren S, Sun X, Lei T, Wu Q. The Effect of Chemical and High-Pressure Homogenization Treatment Conditions on the Morphology of Cellulose Nanoparticles. Journal of Nanomaterials. 2014; 2014:1-11.
25. Souza S, Araújo E, Morais F. Determination of calcium in tablets containing calcium citrate using thermogravimetry (TG). Braz J Therm Anal. 2013; 2(1):17-22.
26. SmithKline Beecham Corporation. High Druf Load Inmediate and Modified Release Oral Dosage Formulations and Processes for their Manufacture. USA; US 6,558,699 B2, 2003.
27. Chavakula R, Narayana M, Vijaya M. Spectral characterization of rupatadine fumarate and its potential impurities. OCAIJ. 2013; 9(4):143-147.
Statistics
927 Views | 697 Downloads
How to Cite
1.
Luis C, German M, Rolando V, Gustavo C. Combined use of DSC, TGA, XDR and NIR in the compatibility study of preformulation mixtures for the development of 10 mg tablets of Rupatadine Fumarate. JDDT [Internet]. 14May2018 [cited 1Dec.2021];8(3):42-4. Available from: http://jddtonline.info/index.php/jddt/article/view/1727