DFT study including NBO, NLO response and reactivity descriptor of bis and tris (1,3-dithiole) tetrathiafulvalene
Abstract
We present a density functional theory (DFT) study on the reactivity of bis and tris (1,3-dithiole) TTF 1-4 by using B3LYP/6-31G (d,p) level. The possible electrophile and nucleophile attacking sites of the title compounds is identiï¬ed using MEP surface plot study. Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gaps were calculated to explain the frontier molecular orbitals and to predict the quantum chemical descriptors. Local reactivity properties have been investigated using average local ionization energies and Fukui functions. Natural Bond Orbital analysis was computed and possible transitions were correlated with the electronic transitions. The calculated ï¬rst hyperpolarizability (β0) of bis and tris (1,3-dithiole) TTF molecules, indicates that investigated molecules might have not the NLO applications.
Keywords: tetrathiafulvalenes; density functional theory; computational chemistry; quantum chemical calculations.
Downloads
References
2. Crivillers N, Mas-Torrent M, Bromley ST, Wurst K, Veciana J, Rovira C, Influence of Intermolecular Interactions on the Formation of tetra(carbomethoxy)-tetrathiafulvalene Assemblies. Chem Phys Chem, 2007, 8(10), 1565-1571. http://dx.doi.org/10.1002/cphc.200700198.
3. Crivillers N, Oxtoby NS, Mas-Torrent M, Veciana J, Rovira C, Improved Synthesis of the High-Mobility Organic Semiconductor DithioÂphene-Tetrathiafulvalene. Synthesis, 2007, 11, 1621-1623. http://dx.doi.org/10.1055/s-2007-966053.
4. Leufgen M, Rost O, Gould C, Schmidt G, Geurts J, Molenkamp LW, et al, High-mobility Tetrathiafulvalene Organic Field-Effect Transistors from Solution Processing, Org Electron, 2008, 9(6), 1101-1106. http://dx.doi.org/10.1016/j.orgel.2008.08.011.
5. Rosokha SV, Kochi JK. Molecular and Electronic Structures of the Long-Bonded π-Dimers of Tetrathiafulvalene Cation-Radical in Intermolecular Electron Transfer and in (Solid-State) Conductivity, J Am Chem Soc, 2007, 129(4), 828-838. http://dx.doi.org/10.1021/ja064166x.
6. Fourmigue M, Batail P, Activation of Hydrogen- and Halogen-Bonding Interactions in Tetrathiafulvalene-Based Crystalline Molecular Conductors, Chem Rev, 2004, 104(11), 5379-5418. http://dx.doi.org/10.1021/cr030645s.
7. Day P, Kurmoo M, Molecular Magnetic Semiconductors, Metals and Superconductors: BEDT-TTF Salts with Magnetic Anions, J Mater Chem, 1997, 7(8), 1291-1295. http://dx.doi.org/10.1039/A608508C.
8. Bryce MR, Recent Progress on Conducting Organic Charge-Transfer Salts, Chem Soc Rev, 1991, 20(3), 355-390. http://dx.doi.org/10.1039/CS9912000355.
9. Moore AJ, Goldenberg LM, Bryce MR, Petty MC, Monkman AP, Morenco C, et al, Cation Recognition by Selfâ€Assembled Layers of Novel Crownâ€Annelated Tetrathiafulvalenes, Adv Mater, 1998, 10(5), 395-398. http://dx.doi.org/10.1002/(SICI)1521-4095(199803)10:5<395::AID-ADMA395>3.0.CO;2-I.
10. Segura JL, Martίn N, New Concepts in Tetrathiafulvalene Chemistry, Angew Chem Int Ed, 2001, 40(8), 1372-1409. http://dx.doi.org/10.1002/1521-3773(20010417)40:8<1372::AID-ANIE1372>3.0.CO;2-I.
11. Mas-Torrent M, Durkut M, Hadley P, Ribas X, Rovira C. High Mobility of Dithiophene-Tetrathiafulvalene Single-Crystal Organic Field Effect Transistors, J Am Chem Soc, 2004, 126(4), 984-985. http://dx.doi.org/10.1021/ja0393933.
12. U Soykan, S Cetin, B Ozturk, F Karaboga, Y Zalaoglu, M Dogruer, et al, Synthesis and Characterization of p-benzophenoneoxycarbonylphenyl Acrylate by Means of Experimental Measurements and Theoretical Approaches, and Bulk Melt Polymerization, J Mol Struct, 2013, 1049, 479-487. http://dx.doi.org/10.1016/j.molstruc.2013.07.003.
13. Breda S, Reva I, Fausto R, Molecular Structure and Vibrational Spectra of 2(5H)-Furanone and 2(5H)-thiophenone Isolated in Low Temperature Inert Matrix, J Mol Struct, 2008, 887(1-3), 75-86. http://dx.doi.org/10.1016/j.molstruc.2008.02.034.
14. Foresman JB, Frisch A, Exploring Chemistry with Electronic Structure Methods: a Guide to Using Gaussian, second ed., Gaussian, Pittsburgh; 1996.
15. Rauhut G, Pulay P, Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields, J Phys Chem, 1995, 99(10), 3093-3100. http://dx.doi.org/10.1021/j100010a019.
16. Scott AP, Radom L, Harmonic Vibrational Frequencies:  An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J Phys Chem, 1996, 100(41), 16502-16513. http://dx.doi.org/10.1021/jp960976r.
17. Durig JR, Ganguly A, El-Defrawy AM, Guirgis GA, Gounev TK, Herrebout WA, Conformational Stability from Variable-Temperature Infrared Spectra of Xenon Solutions, r0 Structural Parameters, and Vibrational Assignment of Pyrrolidine, J Phys Chem A, 2011, 115(26), 7473-7483. http://dx.doi.org/10.1021/jp200692t.
18. Bałczewski P, Kudelska W, Bodzioch A, Comprehensive Heterocyclic Chemistry III, 1st Edition, Volume Set; 2008, 15, 12500. ISBN: 9780080449920
19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al, Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA; 2010.
20. Fukui K, Yonezawa T, Shingu HJ, A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons, J Chem Phys, 1952, 20(4), 722-725. http://dx.doi.org/10.1063/1.1700523.
21. Padmaja L, Ravikumar C, Sajan D, Joe IH, Jayakumar VS, Pettit GR, Neilsen FO, Density Functional Study on the Structural Conformations and Intramolecular Charge Transfer from the Vibrational Spectra of the Anticancer Drug Combretastatinâ€A2. J. Raman Spectrosc, 2009, 40(4), 419-428. http://dx.doi.org/10.1002/jrs.2145.
22. Ravikumar C, Joe IH, Jayakumar VS, Charge Transfer Interactions and Nonlinear Optical Properties of Push-Pull Chromophore Benzaldehyde Phenylhydrazone: A Vibrational Approach. Chem. Phys. Lett, 2008, 460(4-6), 552-558. http://dx.doi.org/10.1016/j.cplett.2008.06.047.
23. Pearson RG, Absolute Electronegativity and Hardness: Applications to Organic Chemistry. J. Org. Chem, 1989, 54(6), 1430-1432. http://dx.doi.org/10.1021/jo00267a034.
24. Parr RG, Pearson RG, Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc, 1983, 105(26), 7512-7516. http://dx.doi.org/10.1021/ja00364a005.
25. Geerlings P, De Proft F, Langenaeker W, Conceptual Density Functional Theory. Chem. Rev, 2003, 103(5), 1793-1873. http://dx.doi.org/10.1021/cr990029p.
26. Parr RG, Szentpaly L, Liu S, Electrophilicity Index. J. Am. Chem. Soc, 1999, 121(9), 1922-1924. http://dx.doi.org/10.1021/ja983494x.
27. Chattaraj K, Giri S, Aromaticity in Polyacene Analogues of Inorganic Ring Compounds. J. Phys. Chem. A, 2007, 111(21), 11116-11121. http://dx.doi.org/10.1021/jp071030s.
28. Parr RG, Yang W, Density-functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
29. Parr RG, Yang W, Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. J. Am. Chem. Soc, 1984, 106(14), 4049-4050. http://dx.doi.org/10.1021/ja00326a036.
30. Yang W, Mortier WJ, The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. J. Am. Chem. Soc, 1986, 108(19), 5708-5711. http://dx.doi.org/10.1021/ja00279a008.
31. James C, Amal Raj A, Reghunathan R, Joe IH, Jayakumar VS, Structural Conformation and Vibrational Spectroscopic Studies of 2,6â€bis (pâ€N, Nâ€dimethyl benzylidene) cyclohexanone Using Density Functional Theory. J. Raman Spectrosc, 2006, 37(12), 1381-1392. http://dx.doi.org/10.1002/jrs.1554.
32. Liu J, Chen ZR, Yuan SF, Study on the Prediction of Visible Absorption Maxima of Azobenzene Compounds. J. Zhejing Univ. Sci. B, 2005, 6(6), 584-589. PMC1389895
33. Foster JP, Weinhold F, Natural Hybrid Orbitals. J. Am. Chem. Soc, 1980, 102(24), 7211-7218. http://dx.doi.org/10.1021/ja00544a007.
34. Reed AE, Curtiss LA, Weinhold F, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev, 1988, 88(6), 889-926. http://dx.doi.org/10.1021/cr00088a005.
35. Liu CG, Guan XH, Redox and photoisomerization switching of the second-order optical nonlinearity of a tetrathiafulvalene derivative of spiropyran across five states: A DFT study. Physical Chemistry Chemical Physics, 2012, 14(15), 5297-5306. http://dx.doi.org/10.1039/c2cp23293f .
36. Kolinsky PV, New Materials and their Characterization for Photonic Device Applications. Opt. Eng, 1992, 31(8), 11676-11684. http://dx.doi.org/10.1117/12.58844.
37. Kleinmann DA, Nonlinear Dielectric Polarization in Optical Media. Phys. Rev, 1962, 126(6), 1977. http://dx.doi.org/10.1103/PhysRev.126.1977.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).