• Preet Amol Singh College of Pharmacy, Pt.B.D.Sharma University of Health Sciences (P.G.I.M.S), Rohtak-124001, Haryana,
  • Neha Bajwa GVM College of Pharmacy, Sonepat, Haryana,


A long cycle of adaptation is going on in the ecosystem either it is a human being who adapted or a plant. Recently carnivorous plants have taken the stage of adaptation. By not getting photosynthesis and nitrogen from the environment noncarnivorous plant has adapted to carnivorous species. Researchers have discovered thousands of new species of carnivorous plants. Recently the social network photographs have revealed the third largest species of Droserea family that is Droserea magnifica.  In this article, we have discussed Droserea magnifica, its discovery, habitat and its future prospects in relation to its phytochemistry and pharmacology.

Keywords: Carnivorous, Droseraceae, Drosera magnifica, Phytochemistry, Pharmacology.


Download data is not yet available.

Author Biographies

Preet Amol Singh, College of Pharmacy, Pt.B.D.Sharma University of Health Sciences (P.G.I.M.S), Rohtak-124001, Haryana,

College of Pharmacy, Pt.B.D.Sharma University of Health Sciences (P.G.I.M.S), Rohtak-124001, Haryana, India

Neha Bajwa, GVM College of Pharmacy, Sonepat, Haryana,

GVM College of Pharmacy, Sonepat, Haryana, India


1. Berg, C. van den Reaching a compromise between conflicting nuclear and plastid phylogenetic trees: a new classification for the genus Cattleya (Epidendreae; Epidendroideae; Orchidaceae). Phytotaxa 2014; 186(2):75–86
2. Gonella, P.M., Rivadavia, F., Sano, P.T. & Fleischmann, A. Exhuming Saint-Hilaire: revision of the Drosera villosa complex (Droseraceae) supports 200 year-old neglected species concepts. Phytotaxa. 2014; 156(1):1–40.
3. Leme, E.M.C & Kollmann, L. (Miscellaneous new species of Brazilian Bromeliaceae. Phytotaxa 2013; 108(1):1–40.
4. Leme, E.M.C., Till, W., Kollmann, L.J.C., de Moura, R.L. & Ribeiro, O.B.C. Miscellaneous new species of Brazilian Bromeliaceae- III. Phytotaxa (2014) 177 (2): 61–100.
5. Rivadavia, F. Four new species of sundews, Drosera (Droseraceae), from Brazil. Carnivorous Plant Newsletter. 2003; 32(3):79–92.
6. Stephens, E.L. A new sundew, Drosera regia (Stephens), from the Cape Province. Transactions of the Royal Society of South Africa. 1926; 8:309–313
7. Gonella P., Rivadavia F. & Fleischmann A. Drosera magnifica (Droseraceae): the largest New World sundew, discovered on Facebook, Phytotaxa 2015; 220(3):257–267
8. Krenn, L., Blaeser, U., Hausknost-Chenicek, N.: Determination of naphthoquinones in Droserae herba by reversedphase high performance liquid chromatography. J. Liqu. Chrom. & Rel. Technol. 1998; 21:3149–3160,
9. Aboussouan, L.S.: Acute exacerbations of chronic bronchitis: focusing management for optimum results. Postgrad. Med. 1996; 99:89–102,
10. Arakida, Y., Suwa, K., Ohga, K., Yokota, M., Miyata, K., Yamada, T. & Honda, K.: In vitro pharmacologic profile of YM158, a new dual antagonist for LTD4 and TXA2 receptors. J. Pharmacol. Exp. Ther. 1998; 287:633–639,
11. Barnes, P.J.: Muscarinic receptor subtype in airways. Life Sci. 1993; 52:521–527.
12. Barnes, P.J.: Neuroeffector mechanisms: the interface between inflammation and neuronal responses. J. Allergy Clin. Immunol. 1996; 98:73–81.
13. Busse, W.W., Kopp, D.E., Middleton, E. Jr.: Flavonoid modulation of human neutrophil function. J. Allergy Clin. Immunol. 1984; 73:801–809
14. Czygan, F.-C., Wichtl, M.: Droserae Herba. In: Teedrogen und Phytopharmaka, 3rd ed., M. Wichtl, ed., Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1997; 188–190.
15. Didry, N., Dubreuil, L., Trotin, F., Pinkas, M.: Antimicrobial activioty of the aerial parts of Drosera peltata Smith on oral bacteria. J. Ethnopharmacol. 1998; 60:91–96.
16. Kawabata, K., Hagio, T., Matsumoto, S., Nakao, S., Orita, S., Aze, Y., Ohno, H.: Delayed neutrophil elastase inhibition prevents subsequent progression of acute lung injury induced by endotoxin inhalation in hamsters. Am. J. Respir. Crit. Care Med. 161:2013–2018.
17. Kirsch, C.: Problematik bei der Beschaffung von Drosera- Droge. Workshop “Herba Droserae – Botanik, Inhaltsstoffe, Analytik”, Vienna 1995, 10. 11.
18. Krahl, R.: Ein wirksames Prinzip aus Drosera rotundifolia. Arzneimittelforschung 1995; 6:342–348.
19. Krenn, L., Länger, R., Kopp, B.: Qualitätsprüfung von Sonnentaukraut. Deutsche Apothekerzeitung 135: 867–870.
20. Krenn, L., Blaeser, U., Hausknost-Chenicek, N.: Determination of naphthoquinones in Droserae herba by reversed phase high performance liquid chromatography. J. Liqu. Chrom. & Rel. Technol. 1998; 21:3149–3160.
21. Krenn, L., Digruber, B., Wawrosch Ch.: Der Einfluss von Trocknung und Lagerung auf den Naphthochinongehalt von Hb. Droserae. Z. Arzn. Gew.pfl. 1998; 3:162–165..
22. Krenn, L., Danzer, V., Tongiani, S.: HPLC-separation and quantitative determination of flavonoids in Sundew herb. In: Polyphenol Communications 2000; 173–174.
23. Lozoya X., Meckes, M., Abou-Zaid, M., Tortoriello, J., Nozzolillo, C., Arnason, J.T.: Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch. Med. Res. 1994; 25:11–15.
24. Pertz, H., Elz, S.: In-vitro pharmacology of sarpogrelate and the enantiomers of its major metabolite: 5-HT2A receptor specificity, stereoselectivity and modulation of ritanserininduced depression of 5-HT contractions in rat tail artery. J. Pharm. Pharmacol. 1994; 47:310-316.
25. Schilcher, H.: Drosera – der Sonnentau: ein bewährtes Antitussivum. Zeitschrift f. Phytotherapie 1993, 14: 50–54.
26. Angiosperm Phylogeny Group An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.Bot. J. Linn. Soc.2009; 161:105-121.
27. Brittnacher, J., 2011. Drosera _ hybrida rest in peace. Carniv. Plant Newslett. 40, 112e121.Chase, M.W., Reveal, J.L. A phylogenetic classification of the land plants to accompany APG III. Bot. J. Linn. Soc. 2009; 161:122-127.
28. Culham, A., Gornall, R.J. The taxonomic significance of naphthoquinones in the Droseraceae. Biochem. Syst. Ecol. 1994; 22:507-515.
29. Durand, R., Zenk, M.H., 1974. The homogentisate ring-cleavage pathway in the biosynthesis of acetate-derived naphthoquinones of the Droseraceae. Phytochem.1974; 13:1483-1492.
30. Andreas, F., Fernando, R., Paulo,M.G., Celeste, P.B.,Ximo,M., Santos,R. Where Is My Food? Brazilian Flower Fly Steals Prey from Carnivorous Sundews in a Newly Discovered Plant-Animal Interaction. Plos One. 2016, 11, 1-15.
31. Egan, P.A., van der Kooy, F. Coproduction and ecological significance of naphthoquinones in carnivorous sundews (Drosera). Chem. Biodivers. 2012; 9:1033-1044.
32. Hegnauer, R. Plumbaginaceae. In: Chemotaxonomie der Pflanzen 5. Birkh€auser, Basel, 1969, pp. 341-347.
33. Hegnauer, R. Ancistrocladaceae, Dioncophyllaceae, Droseraceae, Ebenaceae. In: Chemotaxonomie der Pflanzen 8. Birkh€auser, Basel, 1989; 39-41, 388-389,399-401, 402-411.
34. Hegnauer, R., Nepenthaceae, Plumbaginaceae. In: Chemotaxonomie der Pflanzen 9. Birkh€auser, Basel, 1990, pp. 132-133, 255-258.
35. Kaelin, M., 2014. The sundew hybrid Drosera _ beleziana found on Long Island, New York. Carniv. Plant Newslett. 2014; 43:97-99.
36. Macfarlane, J.M., 1899. Observations on some hybrids between Drosera filiformis and D. intermedia. Trans. Proc. Bot. Soc. Pa 1899, 1, 87-99.
37. Marabini, J., 2014. Ein seltener Vertreter der Familie Droseraceae im Sebalder Reichswald: Drosera _ beleziana Camus (Drosera rotundifolia L. _ Drosera intermedia Hayne). RegnitzFlora 2014; 6:59-61.
38. Meimberg, H., Dittrich, P., Bringmann, G., Schlauer, J., Heubl, G. Molecular phylogeny of Caryophyllidae s. l. based on matK sequences with special emphasis on carnivorous taxa. Plant Biol. 2000; 2:218-228.
39. Pearman, D.A., Rumsey, F.J. Drosera _ belezeana camus confirmed for the British Isles. Watsonia 2004; 25:115- 119.
40. Schlauer, J. 'New' data relating to the evolution and phylogeny of some carnivorous plant families. Carniv. Plant Newslett. 1997; 26:34-38.
41. Schlauer, J., Nerz, J., Rischer, H. Carnivorous plant chemistry. Acta Bot. Gallica 2005; 152:187-195.
42. Paul, A.E., Frank, V.D.K. Phytochemistry of the Carnivorous Sundew Genus Drosera (Droseraceae)- Future Perspectives and Ethnopharmacological Relevance. Chemistry & Biodiversity 2013; 10:1774-1790.
43. Budzianowski, J., Skrzypczak, L., Kukulczanka, K. Phenolic compounds of Drosera intermedia and D. spathulata from in vitro cultures. Acta Hortic. 1993; 330:277–280.
44. Conran, J.G., Gunta Jaudzems, V., Hallam, N.D. Droseraceae germination pattern and their taxonomic significance. Bot. J. Linn. Soc. 1993; 123:211–223.
45. Culham, A., Gornall, R.J. The taxonomic significance of naphthoquinones in the Droseraceae. Biochem. Syst. Ecol.1994; 22:507–515.
46. Braunberger, C., Zehl, M., Conrad, J., Wawrosch, C., Strohbach, J., Beifuss, U., Krenn, L. Flavonoids as chemotaxonomic markers in the genus Drosera. Phytochemistry. 2015; 118:74-82.
47. Faiella, L., Temraz, A., De Tommasi, N., Braca, A. Diterpenes, ionol-derived, and flavone glycosides from Podocarpus elongates. Phytochemistry 2012; 76:172–177.
48. Fico, G., Braca, A., Bilia, A.R., Tome, F., Morelli, I. Flavonol glycosides from the flowers of Aconitum paniculatum. J. Nat. Prod. 2000; 63:1563–1565.
49. Fukushima, K., Nagai, K., Hoshi, Y., Masumoto, S., Mikami, I., Takahashi, Y., Kobori, M. Drosera rotundifolia and Drosera tokaiensis suppress the activation of HMC-1 human mast cells. J. Ethnopharmacol. 2009; 125:90–96.
50. Jhoo, J.W., Sang, S., He, K., Cheng, X., Zhu, N., Stark, R.E., Zheng, Q.Y., Rosen, R.T., Ho, C.T. Characterization of the triterpene saponins of the roots and rhizomes of blue cohosh (Caulophyllum thalictroides). J. Agric. Food Chem. 2001; 49:5969–5974.
51. Kolodziej, H., Pertz, H.H., Humke, A. Main constituents of a commercial Drosera fluid extract and their antagonist activity at muscarinic M3 receptors in guinea-pig ileum. Pharmazie 2002; 57:201–203.
52. Kovácˇik, J., Klejdus, B., Štork, F., Hedbavny, J. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L. Amino Acids 2012; 42:1277–1285.
53. Krenn, L., Kartnig, T., 2005. Sonnentau - Aktuelles über medizinisch genutzte Drosera-Arten. Z. Phytother. 2005; 26:197–202.
54. Krenn, L., Blaeser, U., Hausknost-Chenicek, N. Determination of naphthoquinones in Droserae herba by reversed-phase high performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 1998; 21:3149–3160.
55. Krenn, L., Beyer, G., Pertz, H.H., Karall, E., Kremser, M., Galambosi, B., Melzig, M.F. In vitro anti-spasmodic and anti-inflammatory effects of Drosera rotundifolia. Arzneimittelforschung/Drug Res. 2014; 54:402–405.
56. Krolicka, A., Szpitter, A., Gilgenast, E., Romanik, G., Kaminski, M., Lojkowska, E. Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme Microb. Technol.2008; 42:216–221.
57. Krolicka, A., Szpitter, A., Maciag, M., Biskup, E., Gilgenast, E., Romanik, G., Kaminski, M., Wegrzyn, G., Lojkowska, E. Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of the Alice sundew (Drosera aliciae). Biotechnol. Appl. Biochem. 2009; 53:175–184.
58. Länger, R., Kopp, B. Qualitätsprüfung von Sonnenkraut. 1. Grundlagen für die botanische Identitätsprüfung. Dtsch. Apoth. Ztg. 1995; 135:657–664.
59. Marchant, N.G., Ashton, H.I., George, A.S., 1982. Drosera. In: George, A.S. (Ed.), Flora of Australia, Lecythidales to Batales, vol. 8. Australian Government Printing Service, Canberra, Australia, pp. 9–66.
60. Marczak, Ł., Kawiak, A., Łojkowska, E., Stobiecki, M. Secondary metabolites in in vitro cultured plants of the genus Drosera. Phytochem. Anal. 2005; 16:143–149.
61. Melzig, M.F., Pertz, H.H., Krenn, L.Anti-inflammatory and spasmolytic activity of extracts from Droserae herba. Phytomedicine 2001; 8:225–229.
62. Murashige, T., Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant.1962; 15:473–497.
63. D.H., Karall, E., Kremser, M., Krenn, L. Comparison of the antiinflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HET-CAM assay. Phytother. Res. 2005; 19:323–326.
64. Planchon, J.E., 1848. Sur la famille des Droséracées. Ann. Sci. Nat. Bot. 1848, 3, 79–98, 185– 207, 285–309.
65. Rivadavia, F., Kondo, K., Kato, M., Hasebe, M. Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. Am. J. Bot. 2003; 90:123–130.
66. Rouis, Z., Abid, N., Aouni, M., Faiella, L., Dal Piaz, F., De Tommasi, N., Braca, A. Benzophenone glycosides from Hypericum humifusum ssp. austral. J. Nat. Prod. 2013; 76:979–982.
67. Schlauer, J. A dichotomous key to the genus Drosera L. (Droseraceae). Carniv. Plant Newslett. 1996; 25:67–88.
68. Seine, R., Barthlott, W. Some proposals on the infrageneric classification of Drosera L. Taxon 1994; 43:583–589.
69. Wang, Q., Su, J., Zeng, L. The isolation and identification of flavonoids from Drosera burmannii. Zhong Yao Cai 1998; 21:401–403.
70. Watanabe, M. Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J. Agric. Food Chem. 1999; 47:4500–4505.
71. Yang Kuo, L.M., Zhang, L.J., Huang, H.T., Lin, Z.H., Liaw, C.C., Cheng, H.L., Lee, K.H., Morris-Natschke, S.L., Kuo, Y.H., Ho, H.O. Antioxidant lignans and chromone glycosides from Eurya japonica. J. Nat. Prod. 2013; 76:580–587.
72. Zehl, M., Braunberger, C., Conrad, J., Crnogorac, M., Krasteva, S., Vogler, B., Beifuss, U., Kenn, L.Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important Drosera species by LC–DAD, LC–NMR, and LC–MS. Anal. Bioanal. Chem. 2011; 400:2565–2576.
73. Zenk, M.H., Fürbringer, M., Steglich, W. Occurrence and distribution of 7-1methyljuglone and plumbagin in the Droseraceae. Phytochemistry 1969; 8:2199-2200
74. Lowrie, Allen: A taxonomic revision of Drosera section Stolonifera (Droseraceae) from south-west Western Australia, Nuytsia 2005; 15(3):355-393
75. Rivadavia, Fernando; Kondo, Katsuhiko; Kato, Masahiro und Hasebe, Mitsuyasu: Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA Sequences, American Journal of Botany. 2003; 90:123-130.
76. Adamec, L. Mineral nutrition of carnivorous plants: a review. Bot. Rev. 1997; 63:273–299.
77. Adamec, L., Kohout, P., Benes, K. Root anatomy of three carnivorous plant species. Carniv. Plant Newslett. 2006; 35:19–22.
78. Albert, V.A., Williams, S.E., Chase, M.W. Carnivorous plants: phylogeny and structural evolution. Science 1992; 257:1491-1495.
79. Armstrong, W.Are-examination of the functional significance of aerenchyma. Physiol. P1ant. 1972; 27:173–177.
80. Both, G.J., Gerards, S., Laanbroek, H.J. The occurrence of chemo-autotrophic nitrifiers in water-saturated grassland soils. FEMS Microbiol. Ecol. 1992; 23:15–26.
81. Brewer, J.S. Patterns of plant species richness in a wet slash pine (Pinus elliottii) savanna. J. Torrey Bot. Soc. 1998; 125:216–224.
82. Brewer, J.S. Short term effects of fire and competition on growth and plasticity of Sarracenia alata (Sarraceniaceae). Am. J. Bot. 1999; 86:1264–1271.
83. Brewer, J.S. Why don’t carnivorous pitcher plants compete with noncarnivorous plants for nutrients? Ecology 2003; 84:451–462.
84. Brewer, J.S., Menzel, T. A method for evaluating outcomes of restoration when no reference sites exist. Restor. Ecol.2009; 17:4–11.
85. Brewer, J.S., Cunningham, A.L., Moore, T.P., Brooks, R.M., Waldrup, J.L. A sixyear study of fire-related cues and coexistence of two perennial grasses in a wet longleaf pine (Pinus palustris) savanna. Plant Ecol. 2009; 200:141–154.
86. Burdick, D.M., 1989. Root aerenchyma development in Spartina patens in response to flooding. Am. J. Bot. 1989; 76:777–780.
87. Depuy, N.C., Dreyfus, B.L. Bradyrhizobium populations occur in deep soil under the leguminous tree Acacia albida. Appl. Environ. Microbiol. 1992; 58:2415–2419.
88. Dixon, K.W., Pate, J.S. Phenology, morphology, and reproductive biology of the tuberous sundew, Drosera erythrorhiza Lindl. Aust. J. Bot. 1978; 26:441–454.
89. Ellison, A.M. Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol. 2006; 8:740–747.
90. Ellison, A.M., Gotelli, N.J. Evolutionary ecology of carnivorous plants. Tree 2001; 16: 623–629.
91. Ellison, A.M., Gotelli, N.J. Energetics and the evolution of carnivorous plants—Darwin’s “most wonderful plants in the world”. Exp. Bot.2009; 60:19–42.
92. Fellows, R.J., Patterson, R.P., Raper Jr., C.D., Harris, D. Nodule activity and allocation of photosynthate of soybean during recovery from water stress. Plant Physiol.1987; 84:456–460.
93. Givnish, T.J., 1989. Ecology and evolution of carnivorous plants. In: Abrahamson, W.G. (Ed.), Plant–Animal Interactions. McGraw-Hill, New York, pp. 242–290.
94. Givnish, T.J., Burkhardt, E.L., Happel, R.E., Weintraub, J.D. Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny moist, nutrient-poor habitats. Am. Nat. 1984; 124:479–497.
95. Hinman, S.E., Brewer, J.S. Responses of two frequently-burned wet pine savannas to an extended period without fire. J. Torrey Bot. Soc. 2007; 134:512–526.
542 Views | 561 Downloads
How to Cite
Singh P, Bajwa N. FUTURE PERSPECTIVES OF DROSERA MAGNIFICA: THE FIRST EVER PLANT DISCOVERED ON THE SOCIAL MEDIA. JDDT [Internet]. 15Jul.2017 [cited 19May2022];7(4):12-9. Available from: http://jddtonline.info/index.php/jddt/article/view/1474