• Sunil Kumar Prajapati Dept. of Pharmacy, Bundelkhand University, Jhansi, India
  • Sheo Datta Maurya Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India
  • Manas Kumar Das Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India
  • Vijay Kumar Tilak Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India
  • Krishna Kumar Verma Ram-Eish Institute of Pharmacy, Greater noida, India
  • Ram C Dhakar Jhalawar Medical College & Hospital, Jhalawar, India


This review gives concise information about the dendrimers, properties, synthesis and application in drug delivery, diagnosis and therapy. Due to their unique architecture these have improved physical and chemical properties. They show high solubility, miscibility and reactivity due to their terminal groups. Dendrimers have well defined size, shape, molecular weight and monodispersity. These properties make the dendrimers a suitable carrier in drug delivery application. Dendrimers are unimolecular miceller in nature and due to this enhances the solubility of poorly soluble drugs. Their compatibility with DNA, heparin and polyanions make them more versatile. Dendrimers, also referred as modern day polymers, they offer much more good properties than the conventional polymers. Due to their multivalent and mono disperse character dendrimers have stimulated wide interest in the field of chemistry biology, especially in applications like drug delivery, gene therapy and chemotherapy. Self assembly produces a faster means of generating nanoscopic functional and structural systems. But their actual utility in drug delivery can be assessed only after deep understanding of factors affecting their properties and their behavior in vivo.

Key words: Dendrimers, PAMAM, monodispersity, Divergent-Convergent synthesis, carrier for drug delivery



Download data is not yet available.

Author Biographies

Sunil Kumar Prajapati, Dept. of Pharmacy, Bundelkhand University, Jhansi, India

Dept. of Pharmacy, Bundelkhand University, Jhansi, India

Sheo Datta Maurya, Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India

Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India

Manas Kumar Das, Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India

Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India


Vijay Kumar Tilak, Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India

Dept. of Pharmacy, IEC Group of Institution, Greater Noida, India

Krishna Kumar Verma, Ram-Eish Institute of Pharmacy, Greater noida, India

Ram-Eish Institute of Pharmacy, Greater noida, India

Ram C Dhakar, Jhalawar Medical College & Hospital, Jhalawar, India

Jhalawar Medical College & Hospital, Jhalawar, India


1. Dwivedi Devendra Kumar, Singh Arun Kumar, Dendrimers: a novel carrier system for drug delivery, 2014; 4(5):1-6
2. D’Emanuele A, Jevprasesphant R, Penny J, Attwood D. The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J Control Release 2004;95:5447–53.
3. Tomalia DA, Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 2005;30:294–324.
4. Boas U, Jørn Bolstad Christensen, Heegaard PMH, “Dendrimers in medicine and biotechnology: new molecular tools”, 2006, 62-70
5. Mishra Ina, Dendrimer: a novel drug delivery system, Journal of Drug Delivery & Therapeutics; 2011; 1(2):70-74
6. Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science 2004;303:1818‑22.
7. Soto‑Castro D, Cruz‑Morales JA, Ramírez Apan MT, Guadarrama P. Solubilization and anticancer‑activity enhancement of Methotrexate by novel dendrimeric nanodevices synthesized in one‑step reaction. Bioorg Chem 2012;41‑2:13‑21.
8. Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005;57:2215‑37.
9. Patton DL, Cosgrove Sweeney YT, McCarthy TD, Hillier SL. Preclinical safety and efficacy assessments of dendrimer‑based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob Agents Chemother 2006;50:1696‑700.
10. Tolia GT, Choi HH. The role of dendrimers in topical drug delivery. Pharm Technol 2008;32:88‑98.
11. Swanson DR, Huang B, Abdelhady HG, Tomalia DA. Unique steric and geometry induced stoichiometries observed in the divergent synthesis of poly (ester‑acrylate/amine) (PEA) dendrimers. New J Chem 2007;31:1368‑78.
12. Tomalia DA, Fréchet JM. Discovery of dendrimers and dendritic polymers: A brief historical perspective*. J Polym Sci A Polym Chem 2002;40:2719‑28.
13. Tomalia DA, Rookmaker M. Poly (propylene imine) dendrimers. Polymer Data Handbook. NewYork: Oxford University Press; 2009.
14. Singh P. Dendrimers and their applications in immunoassays and clinical diagnostics. Biotechnol Appl Biochem 2007;48:1‑9.
15. Hill SW, Heidecker G. Transfection of hematopoetic cells in suspension using an activated‑dendrimer reagent. In Qiagen News. Sect. 1998; 8‑10.
16. Liu H, Wang H, Yang W, Cheng Y. Disulfide cross‑linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc 2012;134:17680‑7.
17. Spangler BD. Inventor biosensors utilizing dendrimer‑immobilized ligands and there use thereof patent. United States Patent 7138121. 2006.
18. Available from:
19. Hawker CJ and J.M. J. Fr´echet, “Preparation of polymers with controlled molecular architecture. A new convergent approach to dendriticmacromolecules,” Journal of the American Chemical Society, 1990; vol. 112, no. 21, pp. 7638–7647.
20. Esfand R and Tomalia DA, “Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications,” Drug Discovery Today, 2001; vol. 6, no. 8, pp. 427–436.
21. Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, and Kannan RM, “Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload,” Biomaterials, 2006; vol. 27, no. 4, pp. 660–669.
22. Khandare JJ, Jayant S, Singhet A al., “Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel,” Bioconjugate Chemistry, 2006; vol. 17, no. 6, pp. 1464–1472.
23. D’Emanuele A and Attwood D, “Dendrimer-drug interactions,” Advanced Drug Delivery Reviews, 2005, vol. 57, no. 15, pp. 2147– 2162.
24. Gupta U, Agashe HB, Asthana A, and Jain NK, “Dendrimers: novel polymeric nanoarchitectures for solubility enhancement,” Biomacromolecules, 2006; vol. 7, no. 3, pp. 649–658.
25. Aulenta F, Hayes W, and Rannard S, “Dendrimers: a new class of nanoscopic containers and delivery devices,” European Polymer Journal, 2003; vol. 39, no. 9, pp. 1741–1771.
26. Gillies ER and Fr´echet JMJ, “Dendrimers and dendritic polymers in drug delivery,” Drug Discovery Today, 2005; vol. 10, no. 1, pp. 35–43.
27. Menjoge AR, Kannan RM and Tomalia DA, Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications, Drug Discovery Today. 2010; 15(5/6):171-185.
28. Yang, H. and Lopina, S.T. Stealth dendrimers for antiarrhythmic quinidine delivery. J. Mater. Sci. Mater. Med. 2007, 18, 2061–2065.
29. Morgenroth F, Reuther E, Mullen K, Polyphenylene Dendrimers: From Three-Dimensional to Two-Dimensional Structures Angewandte Chemie, International Edition in English, 1997; 36 (6):631-634.
30. Nanjwade BK, Hiren M, Dendrimers: Emerging polymers for drug-delivery systems, Eur J Pharm Sci., 38 (3),2009, 185-196.
31. Kolhe, P., Khandare, J., Pillai, O., Kannan, S., Lieh, M., Kannan, R., Hyperbranched polymer-drug conjugates with high drug payload for enhancedcellular delivery. Pharm Res, 2004, 21:2185–95.
32. Chauhan, A.S., Jain, N.K., Diwan, P.V., Khopade, A.J. Solubility enhancement of indomethacin with poly (amidoamine) dendrimers and targeting toinflammatory regions of arthritic rats. J Drug Target, 2004, 12:575-83.
33. Yang, J., Morris, S., Lopina, T. Polyethylene glycolpolyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water, J. Colloid Interface Sci, 2004 ,273:148– 154.
34. Devarakonda, B., Hill, R.A., DeVilliers, M.M. The effect of PAMAM dendrimer generation size and surface functional groups on the aqueoussolubility of nifedipine. Int J Pharm, 2004, 284:133-40.
35. Yiyun, C., Tongwen, X. Dendrimers as potential drug carriers part I solubilization of non-steroidal anti-inflammatory drugs in the presence ofpolyamidoamine dendrimers. Eur J Med Chem, 2005, 40:1188-92.
36. Hawker, C.J., Wooley, K.L., Frechet, J.M. Unimolecular micelles and globular amphiphiles: Dendritic macromolecules as novel recyclable solubilisation agents. Journal Chemical Society Perkin Trans, 1997; 1:1287-97.
37. Zeng, F., Zimmerman, S.C. Dendrimers in Supramolecular Chemistry: FromMolecular Recognition to Self-Assembly. Chem Rev, 1997, 97:1681-712.
38. Purohit, G., Sakthivel, T., Florence, A.T. Interaction of cationic partial dendrimers with charged and neutral liposomes. Int J Pharm, 2001, 214:71-6.
39. Yiyun, C., Tongwen, X. Dendrimers as potential drug carriers part I solubilization of non-steroidal anti-inflammatory drugs in the presence ofpolyamidoamine dendrimers. Eur J Med Chem, 2005, 40:1188-92.
40. Bae, Y., Nishiyama, N., Fukushima, H., Koyama, M., Yasuhiro, K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy, Bioconjug. Chem, 2005, 16:122–130.
41. Newkome, G.R., Woosley, B.D., He ,E., Morefield, C.N., Guther, R., Baker, G.R. Supromolecular chemistry of flexible, dendritic-based structure employing molecular recognition, Chemical Communications ,1996,2737-8.
42. Svenson S, Tomalia DA, Dendrimers in biomedical applications—reflections on the field, Advanced drug delivery reviews, 2012.
43. Ciolkowski M, Petersen JF, Ficker M, Janaszewska A, Christensen JB, Klajnert B, et al., Surface modification of PAMAM dendrimer improves its biocompatibility, Nanomedicine: Nanotechnology, Biology and Medicine, 2012; 8(6):815-817.
44. Bhadra D, Bhadra S and Jain NK. PEGylated peptide based dendritic nanoparticulate system for delivery of artemether. J Drug Del Sci Tech, 2005; 15: 65-73.
45. Uchegbu IF, Sadiq L, Pardakhty A, El-Hammadi M, Gray AI, Tetley L, Wang W, Zinselmeyer BH and Schatzlein AG. Gene transfer with three amphiphilic glycol chitosans —the degree of polymerisation is the main controller of transfection efficiency. J. Drug Target., 2004; 12: 527–539.
46. Roberts JC, Bhalgat MK, Zera RT, Preliminary biological evaluation of polyamidoamine (PAMAM) StarburstTM dendrimers. J. Biomed. Mater. Res. 1996. 30, 53–65.
47. Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW, Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn. Reson. Med. 2001. 46, 781–788.
48. Petar R, Dvornic L, Douglas S, Michael J, Owen SP, Radially Layered Copoly(amidoamin organosilicon) Dendrimers, United States Patent, 1998; 5:739.
49. Dvornic PR, Owen MJ, Poly (amidoamine organosilicon) Dendrimers and Their Derivatives of Higher Degree of Structural Complexity, Synthesis and Properties of Silicones and Silicone-Modified Materials,2002,236-259.
50. Tomalia DA, Dewald JR, Hall MR, Martin SJ, Smith PB, Preprints 1st SPSJ Polym. Conf. Soc. Polym. Sci. Jpn, Kyoto, 1984, 65.
51. Hawker C, Fréchet JJ, J. Chem. Soc. Chem. Commun, 1990, 1010.
52. Brabander-van den Berg EMM, Meijer EW, Poly (propylene imine) Dendrimers: Large Scale Synthesis by Heterogenously Catalyzed Hydrogenation, Angew Chem Int Ed Engl, 32, 1308-1311.
53. Ritzén A, Frejd T, Synthesis of a chiral dendrimer based on polyfunctional amino acids, Chem. Commun, 1999, 207- 208.
54. Colinger M, Biological applications of dendrimers, Curr. Opin. Chem. Biol., 2002; 6, 742–748.
55. Yiyun C, Zhenhua X, Minglu M, Tonguen X, Dendrimers as Drug Carriers:Applications in Different Routes of Drug, J.Pharma.Sci., 2008; 97(1):123-143.
56. Hawker C, Wooley KL, Fréchet JMJ, J.Chem. Soc. Perkin, Trans,1993; 1:1287-1289
57. Gillies, E.R. and J.M.J. Frechet. Dendrimers and dendritic polymers in drug delivery. Drug Discovery Today, 2005; 10: 35-43.
58. KUMAR, Peeyush. et al. Dendrimer: a novel polymer for drug delivery. JournalofInnovativeTrends in PharmaceuticalSciences, 2010; 1(6):252-269.
59. SILVA, Alexandra Rodrigues Pereira. Estudo das propriedades bioquímicas de sistemas poliméricos arborescentes PGLD-AAS para o tratamento de câncer, dissertação (Master of Science in MaterialsEngineering) - Instituteof Science, Universityof Itajubá, Itajubá, 2008.
60. Boris, D. and M. Rubinstein. A self-consistent mean field model of a starburst dendrimers: dense core vs. Dense Shells. Macromolecules, 1996; 29: 7251- 7260.
61. Majoros, Istvan J.; BAKER, James R. Dendrimer-based Nanomedicine.1.USA: Pan Stanford Publishing Pte. 2008, 440.
62. Cheng, Yiyun et al. Dendrimers the drug carriers: applications in different routes of drug administration. Journal of Pharmaceutical Sciences, 2008; 97(1):123-143.
63. Sampathkumar, Srinivasa-Gopalan; YAREMA, Kevin J. Dendrimers in Cancer Diagnosis and Treatment. IN: Kumar, Challa (Ed.). Nanomaterial is Cancer Diagnosis. Baton Rouge: WILEY-VCH Verlag GmbH & Co. KGaA, 2007, 1-43.
64. MukherjeE Swarupananda; Patra Swapan Sandip; Sarkar Dhrubajyot. Dendrimers: A novel approach in nano drug delivery. NSHM Journal of Pharmacy and Healthcare Management, 2011; 2:51-60.
65. Prestidge Clive; Griesser Hans; Barnes Tim. Interfacial properties of Dendrimers for improved pharmaceutical activity. Australian Postgraduate Research, School of Pharmacy, University of south Australia.
66. Chai, M., Y. Niu, W.J. Youngs and P.L. Rinaldi. Structure and conformation of DAB dendrimers in solution via multidimensional NMR techniques. J. Am. Chem. Soc., 2001; 123: 4670-4678.
67. Caminade, A.M., R. Laurent and J.P. Majoral. Characterization of dendrimers. Advanced Drug Delivery Reviews, 2005; 57: 2130-2146.
68. Devarakonda Bharathi; LI Ning; Villiers M. Melgardt. Effect of polyamidoamine (PAMAM) Dendrimers on the in vitro release of nifedipine from water-insoluble aqueous gels.AAPS PharmSci Tech, 2005; 6(3):504-512.
69. Abhay Singh et al. Solubility enhancement of poorly water soluble molecules using Dendrimers. Material Matters, 2007; 2(1):24-27.
70. Fakhrnabavi Hassan. Dendrimers the building blocks for nanoscale synthesis. Journal of Applied Chemical Researches, Tehran, 2010; 3(12):25-28.
71. Schulz Michael. Recent Advances in the use of the Dendrimers vehicles for drug delivery (Florida: University of Florida), 2011, 13.
72. Kim Tae-il et al. Comparison Between arginine conjugated PAMAM Dendrimers with Structural diversity for gene delivery systems. Journal of Controlled Release, Republic of Korea, 2009; 136(2):132-139.
73. Mcneil Scott E. Nanoparticle therapeutics: a personal perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009; 1(3):264-271.
74. KAMINSKAS, Lisa M.; BOYD, Ben J., PORTER, Christopher JH. Dendrimer pharmacokinetics: the effectof size, structure and surface characteristics on ADME properties.Nanomedicine, London, 2011; 6(6):1063-1084.
75. Wolinsky Jesse B.; Grinstaff Mark W. Therapeutic and diagnostic applications of Dendrimers for cancer treatment. Advanced Drug Delivery Reviews, USA, 2008; 60(9):1037-1055.
76. Gillies ER, Dy E, Frechet JMJ, Szoka FC: Biological evaluation of polyester dendrimer: poly (ethylene oxide) ―bow-tie‖ hybrids with tunable molecular weight and architecture. Mol Pharm 2005, 2:129–138.
77. Garea Alexandra Sorina; Ghebaur Adi; Andronescu Corina. Systems based on Dendrimers and antitumor drug synthesized by non-covalent method. Materia le plastice, Bucharest, 2011; 48(1):17-22.
78. Lee Jun H.; Nan Anjan. Combination drug delivery approaches in metastatic breast cancer. Journal of Drug Delivery,New York, 2012, 2012, 1-17.
79. Garg Tarun et al. Dendrimer - a novel scaffold for drug delivery. International Journal of Pharmaceutical Sciences Research and Review, 2011; 7(2):211-220.
80. Zeng F, Zimmerman SC: Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem Rev 1997, 97:1681–1712.
81. Ottaviani MF, Cossu E, Turro NJ, Tomalia DA: Characterization of starburst dendrimers by electron paramagnetic resonance. 2. Positively charged nitroxide radicals of variable chain length used as spin probes. J Am Chem Soc 1995, 117:4387–4398.
82. Emrick T, Fréchet JMJ: Self-assembly of dendritic structures. Curr Opin Coll Interface Sci 1999, 4:15– 23.
83. Christine D, Ijeoma FU, Andreas GS: Dendrimers in gene delivery. Adv Drug Deliv Rev 2005, 57:2177–2202.
84. Gibson HW, Hamilton L, Yamaguchi N: Molecular self-assembly of dendrimers, non-covalent polymers and polypseudorotaxanes. Polym Adv Technol 2000, 11:791.
85. Gupta U, Agashe H and Jain NK. Polypropylene imine dendrimer mediated solubility enhancement: effect of Ph and functional groups of hydrophobes. J Pharm Pharm Sci, 2007; 10(3):358-67.
86. Wang DJ and Imae T. Fluorescence emission from Dendrimer & its pH dependence. J. Am. Chem. Soc., 2004; 126 (41): 13204-13205.
87. Barbara K, Maria B, Review Dendrimers: properties and applications, Acta Biochimica Polonica, 2001; 48(1):199- 208.
88. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: Starburst‑dendritic macromolecules. Polym J 1985;17:117‑32.
89. Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: A tutorial. Chem Soc Rev 2011;40:173‑90.
90. Sonke S, Tomalia DA, Dendrimers in biomedical applications reflections on the Field, Advanced Drug Delivery Reviews, 2005; 57:2106 – 2129.
91. Sakthivel T, Florence AT. Dendrimers and dendrons: facets of pharmaceutical nanotechnology, Drug delivery technology, 2003; 73-78.
92. D’ Emanuele A, R. Jevprasephant. The use of a dendrimer – propranolol prodrug to bypass efflux transporters and enhance oral bioavailability, Journal of controlled release, 2004; 95: 447-453.
93. Cloninger MJ . Biological applications of dendrimers. Curr Opin Chem Biol 2002; 6:742‑8.
94. Jang WD, Kamruzzaman Selim KM, Lee CH, Kang IK. Bioinspired application of dendrimers: From bio‑mimicry to biomedical applications. Prog Polym Sci 2009; 34:1‑23.
95. Cheng Y, Wu Q, Li Y, Hu J, Xu T. New insights into the interactions between dendrimers and surfactants: 2. Design of new drug formulations based on dendrimer‑surfactant aggregates. J Phys Chem B 2009;113:8339‑46.
96. Jansen JF, de Brabander‑van den Berg EM, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science 1994;266:1226 9.
97. D’Emanuele A, Attwood D. Dendrimer‑drug interactions. Adv Drug Deliv Rev 2005;57:2147‑62.
98. Najlah M, Freeman S, Attwood D, D’Emanuele A. In vitro evaluation of dendrimer prodrugs for oral drug delivery. Int J Pharm 2007;336:183-90.
99. Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM. PEG‑epirubicin conjugates with high drug loading. J Bioact Compat Polym 2005;20:213‑30.
100. Padilla OL, Ihre HR. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation, Bioconjug Chem. 2002; 13: 453–461.
101. Parekh Hejal B, Jivani Rishad, Jivani NP, Patel LD, Makwana Ami, Sameja Krunal, Novel insitu polymeric drug delivery system: a review, Journal of Drug Delivery and Therapeutics, 2012; 2(5):136-145
102. Kaur Harpreet, Singh Gurpreet, In-vivo methods to study uptake of nanoparticles into the brain, Journal of Drug Delivery and Therapeutics; 2013, 3(4):173-177
103. Leyuan Xu, Hao Zhang, Yue Wu, Dendrimer Advances for the Central Nervous System Delivery of Therapeutics, ACS Chem. Neurosci. 2014; 5:2−13
104. Nowacek, A., and Gendelman, H. E. NanoART, neuroAIDS and CNS drug delivery. Nanomedicine. 2009; 4:557−574.
105. Wong, H. L., Wu, X. Y., and Bendayan, R. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Delivery Rev. 2012; 64, 686−700.
106. Dhanikula RS, Hildgen P. Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate. Biomaterials 2007;28:3140–52.
107. Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm 2008;5:105–16.
108. Prieto MJ, Schilrreff P, Tesoriero MVD, Morilla MJ, Romero EL. Brain and muscle of Wistar rats are the main targets of intravenous dendrimeric sulfadiazine. Int J Pharm 2008;360:204–12.
109. Garg Ashish, Gupta M.M., Mouth Dissolving Tablets: A Review, Journal of Drug Delivery & Therapeutics; 2013; 3(2):207-214
110. Lin Y, Fujimori T, Kawaguchi N, et al. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats. J Control Release 2011;149:21–8.
111. Sadekar S, Ghandehari H. Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 2012;64:571–88.
112. Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 2003;259:143–60.
113. Thaxton CS, Georganopoulou DG, Mirkin CA. Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 2006;363:120–6.
114. Dhakar RC, Nasal drug delivery: success through integrated device development, Journal of Drug Delivery & Therapeutics; 2011; 1(1):2-7.
115. Kapoor D, Vyas RB, Lad C, Patel M, Lal B, Site specific drug delivery through nasal route using bioadhesive polymers, Journal of Drug Delivery & Therapeutics. 2015; 5(1):1-9.
116. Kim, I.D.; Shin, J.H.; Kim, S.W.; Choi, S.; Ahn, J.; Han, P.L.; Park, J.S.; Lee, J.K. Intranasal delivery of HMGB1 siRNA confers target gene knockdown and robust neuroprotection in the postischemic brain. Mol. Ther. 2012, 20, 829–839.
117. Perez, A.P.; Mundina-Weilenmann, C.; Romero, E.L.; Morilla, M.J. Increased brain radioactivity by intranasal P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels. Int. J. Nanomedicine 2012, 7, 1373–1385.
118. Toub N, Malvy C, Fattal E, Couvreur P. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed Pharmacother 2006;60:607–20.
119. de Martimprey H, Vauthier C, Malvy C, Couvreur P. Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm 2009;71:490–504.
120. Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005;57:2177–202.
121. Galletti R, Masciarelli S, Conti C, Matusali G, Di Renzo L, Meschini S, et al. Inhibition of Epstein Barr Virus LMP1 gene expression in B lymphocytes by antisense oligonucleotides: uptake and efficacy of lipid-based and receptor-mediated delivery systems. Antiviral Res 2007;74:102–10.
122. Tack F, Bakker A, Maes S, Dekeyser N, Bruining M, Elissen‑Roman C, et al. Modified poly (propylene imine) dendrimers as effective transfection agents for catalytic DNA enzymes (DNAzymes). J Drug Target 2006;14:69‑86.
123. Pandita D, Santos JL, Rodrigues J, Pêgo AP, Granja PL, Tomás H. Gene delivery into mesenchymal stem cells: A biomimetic approach using RGD nanoclusters based on poly (amidoamine) dendrimers. Biomacromolecules 2011;12:472‑81.
124. Santos JL, Oliveira H, Pandita D, Rodrigues J, Pêgo AP, Granja PL, et al. Functionalization of poly (amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. J Control Release 2010;144:55‑64.
125. Santos JL, Pandita D, Rodrigues J, Pêgo AP, Granja PL, Balian G, et al. Receptor‑mediated gene delivery using PAMAM dendrimers conjugated with peptides recognized by mesenchymal stem cells. Mol Pharm 2010;7:763‑74.
126. Diaz-Mochon JJ, Fara MA, Sanchez-Martin RM, Bradley M. Peptoid dendrimers-microwave-assisted solid-phase synthesis and transfection agent evaluation. Tetrahedron Lett 2008;49:923–6.
127. Hussain M, Shchepinov MS, Sohail M, Benter IF, Hollins AJ, Southern EM, et al. A novel anionic dendrimer for improved cellular delivery of antisense oligonucleotides. J Control Release 2004;99:139– 55.
128. Vincent L, Varet J, Pille J-Y, Bompais H, Opolon P, Maksimenko A, et al. Efficacy of dendrimer-mediated angiostatin and TIMP-2 gene delivery on inhibition of tumor growth and angiogenesis: in vitro and in vivo studies. Int J Cancer 2003;105:419–29.
129. Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM. Poly(ethylene glycol)-Conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 2002;35:3456–62.
130. Namazi H, Adeli M, Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials 2005. 26, 1175–1183.
131. Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW, Encapsulation of guest molecules into a dendritic box. Science 1994. 266, 1226–1229.
132. Co´rdova A, Janda KD, Synthesis and catalytic antibody functionalization of dendrimers. J. Am. Chem. Soc. 2001. 123, 8248–8259.
133. Reddy JA, Allagadda VM, Leamon CP, Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr. Pharm. Biotechnol. 2005. 6, 131–150.
134. Leamon CP, Reddy JA, Folate targeted chemotherapy. Adv. Drug Delivery Rev. 2004. 56, 1127–1141.
135. Laheru D, Jaffee EM, Immunotherapy for pancreatic cancer – science driving clinical progress. Nat. Rev. Cancer 2005. 5, 549–467.
136. Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, et al. Targeted delivery of RNA cleaving DNA-enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther 2004;7:31–41.
137. Islam MT, Majoros IJ, Baker Jr JR. HPLC analysis of PAMAM dendrimer based multifunctional devices. J Chromatogr B 2005;822:21–6.
138. Yang W, Cheng Y,XuT,WangX,WenL-P. Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 2009;44:862–8.
139. Malik N, Evagorou EG, and Duncan R, “Dendrimer-platinate: a novel approach to cancer chemotherapy,” Anti-Cancer Drugs, 1999; vol. 10, no. 8, pp. 767–776.
140. Malik N, Duncan R, Tomalia D, and Esfand R, “An antineoplastic- dendritic polymer drug delivery system,” EP1439859B1, 2007.
141. Malik N and Duncan R, “Dendritic-platinate drug delivery system,” US6585956B2, 2003.
142. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, and McManus AT, “Dendrimer-silver complexes and nanocomposites as antimicrobial agents,” Nano Letters, 2001; vol. 1, no. 1, pp. 18–21.
143. Tuo Wei, Chao Chen, Juan Liu, Cheng Liu, Paola Posocco, Xiaoxuan Liu, Qiang Cheng, Shuaidong Huo, Zicai Liang, Maurizio Fermeglia. Sabrina Pricl, Xing-Jie Liang, Palma Rocchi, Ling Peng, Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance, PNAS, 2015; 112(10):2978–2983.
144. Choi Y, Thomas T, Kotlyar A, Islam MT, Baker JR, Synthesis and functional evaluation of DNA assembled polyamidoamine (PAMAM) dendrimer clusters with cancer cellspecific targeting. Chem. Biol. 2005. 12, 35–43.
145. Quintana A, Raczka Piehler EL, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mule J, Baker JR, Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res. 2002. 19, 1306–1310.
146. Choi Y, Baker JR, Targeting cancer cells with DNA-assembled dendrimers: A mix-and-match strategy for cancer. Cell Cycle 2005. 4, 669–671.
147. Sampathkumar SG, Yarema KJ, Targeting cancer cells with dendrimers. Chem. Biol. 2005. 12, 5–6
148. Lee SC, Parthasarathy R, Botwin K, Kunneman D, Rowold E, Lange G, Klover J et al, Biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed. Microdevices 2004. 6, 191–202.
149. Chaves F, Calvo JC, Carvajal C, Rivera Z, Ramirez Let al, Synthesis, isolation and characterization of Plasmodium falciparum antigenic tetrabranched peptide dendrimers obtained by thiazolidine linkages. J. Pept. Res. 2001. 58, 307–316.
150. Heegaard PMH, Boas U, an Sorensen NS, “Dendrimers for vaccine and immunostimulatory uses. A review,” Bioconjugate Chemistry, 2010; vol. 21, no. 3, pp. 405–418.
151. Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, and Albericio F, “Peptide and amide bond-containing dendrimers,” Chemical Reviews, 2005; vol. 105, no. 5, pp. 1663–1681.
152. Tam JP, “Multiple antigen peptide system,” US5229490A, 1993.
153. Vandamme TF and Brobeck L, "Poly(amidoamine) Dendrimers as Ophthalmic Vehicles for Ocular Delivery of Pilocarpine Nitrate and Tropicamide," J. Control. Rel. 2005; 102 (1), 23–38.
154. Boas U, Heegaard PM, Dendrimers in drug research, Chemical Society Reviews, 2004; 33(1):43-63.
155. Shaunak S et. al., "Polyvalent Dendrimer Glucosamine Conjugates Prevent Scar Tissue Formation," Nature Biotechnol. 2004; 22 (8), 977–984.
156. Marano RJ et al., "Dendrimer Delivery of an Anti-VEGF Oligonucleotide into the Eye: A Long-Term Study into Inhibition of Laser-Induced CNV, Distribution, Uptake, and Toxicity,"Gene Ther. 2005; 12 (1), 1544–1550.
157. Cheng Y et al., "Transdermal Delivery of Nonsteroidal Anti-Inflammatory Drugs Mediated by Polyamidoamine (PAMAM) Dendrimers," J. Pharm. Sci. 2007; 96 (3), 595–602.
158. Chauhan AS et al., "Dendrimer-Mediated Transdermal Delivery: Enhanced Bioavailability of Indomethacin," J. Control. Rel. 2003, 90 (3), 335–343.
159. Bai S, Thomas C, Ahsan F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci 2007; 96:2090–106.
160. Bai S, Ahsan F. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm Res 2009;26:539-48.
161. Shuhua B and Fakhrul A. Synthesis and Evaluation of Pegylated Dendrimeric Nanocarrier for Pulmonary Delivery of Low Molecular Weight Heparin. Pharmaceutical Research 2004; 26(3): 539-548.
162. Bai S, Gupta V, Ahsan F. Cationic liposomes as carriers for aerosolized formulations of an anionic drug: safety and efficacy study. Eur J Pharm Sci 2009;38:165–71.
163. Chandel Priya, Raj Kumari, Kapoor Ankita, Liquisolid technique: an approach for enhancement of solubility Journal of Drug Delivery & Therapeutics; 2013; 3(4):131-137
164. Jain NK, Gupta U, Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability, Expert Opin Drug Metab Toxicol, 2008; 2003:1035-1045.
165. Mohammad N, Antony D, Crossing cellular barriers using dendrimer nanotechnologies, Current Opinion in Pharmacology, 2006; 6:522–527.
166. Hecht S, Fre´chet JMJ, Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science, Angew. Chem., Int. Ed. Engl., 2001, 40:74–91.
167. Jiang DL, Aida T, A dendritic iron porphyrin as a novel haemoproteinmimic: effects of the dendrimer cage on dioxygenbinding activity, Chem. Commun, 1996, 1523–1524.
168. Boas U, Heegaard PMH, Dendrimers in drug research, Chem. Soc. Rev.,2004, 33:43– 63.
169. Yadav Geeta, Panchory Hiten, Nanosponges: a boon to the targeted drug delivery system, Journal of Drug Delivery & Therapeutics. 2013; 3(4):151-155.
170. Lohumi Ashutosh, Rawat Suman, Sarkar Sidhyartha, Sipai Altaf bhai., Yadav M. Vandana, A novel drug delivery system: niosomes review, Journal of Drug Delivery & Therapeutics. 2012; 2(5):129-135
171. Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science, 2014; 39(2):268-307.
172. Myc A, Majoros IJ, Thomas TP, Baker JR Jr. Dendrimer‑based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules 2007;8:13-18.
173. Lai P-S, Lou P-J, Peng C-L, Pai C-L, Yen W-N, Huang M-Y, et al. Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release 2007;122:39–46.
174. Wiwattanapatapee R, Lomlim L, Saramunee K. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release 2003;88:1-9.
175. Dodziuk H, Demchuk OM, Schilf W, Dolgonos G, Synthesis. NMR study of a first generation dendrimer having four branches involving four glycine and one carbomoyl-(3,7-dimethoxy-2- naphthalene) groups and attempts to complex it with α-, β- or γ-cyclodextrins. J Mol Struct 2004;693:145–51.
176. Muhanna AMA, Ortiz-Salmerón E, GarcIa-Fuentes L, Giménez- MartInez JJ, Vargas-Berenguel A. Synthesis of peptide dendrimers based on a #-cyclodextrin core with guest binding ability. Tetrahedron Lett 2003;44:6125–8.
177. Albrecht M, Gossage RA, Lutz M, Spek AL, Van Koten G, Diagnostic organometallic and metallodendritic materials for SO2 gas detection: reversible binding of sulfur dioxide to arylplatinum(II) complexes, Chem Eur J.,2000; 6:1431- 1445.
178. Schumann H, Wassermann BC, Schutte S, Velder J, Aksu Y, Krause W, Synthesis and characterization of water-soluble tin-based metallodendrimers, Organometallics, 2003, 22:2034-41.
179. Krause W, Hackmann-Schlichter N, Maier FK, Muller R, Dendrimers in diagnostics, Topics Curr Chem, 2000; 210:261–308.
180. Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents, Magn Reson Med, 1994; 31:1-8.
181. Wiener EC, Konda S, Shadron A, Brechbiel M, Gansow O, Targeting dendrimer– chelates to tumors and tumor cells expressing the highaffinity folate receptor, Invest Radiol 1997, 32:748-54.
182. Hay BP, Werner EJ, and Raymond KN, “Estimating the number of bound waters in Gd(III) complexes revisited. Improved methods for the prediction of q-values,” Bioconjugate Chemistry, 2004; vol. 15, no. 6, pp. 1496–1502.
183. Caravan P, Ellison JJ, McMurry TJ, and Lauffer RB, “Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications,” Chemical Reviews, 1999; vol. 99, no. 9, pp. 2293–2352.
184. Franano FN, Edwards WB, Welch MJ, Brechbiel MW, Gansow OA, and Duncan JR, “Biodistribution and metabolism of targeted and nontargeted protein- chelate-gadolinium complexes: evidence for gadolinium dissociation in vitro and in vivo,” Magnetic Resonance Imaging, 1995; vol. 13, no. 2, pp. 201–214.
185. Wiener EC, Brechbiel MW, Brothers H et al., “Dendrimerbasedmetal chelates: a newclass of magnetic resonance imaging contrast agents,” Magnetic Resonance in Medicine, 1994; vol. 31, no. 1, pp. 1–8.
186. Kobayashi H, Kawamoto S, Jo SK, Bryant Jr. HL, Brechbiel MW, and Star RA, “Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores,” Bioconjugate Chemistry, 2003; vol. 14, no. 2, pp. 388– 394.
187. Misgeld, T., and Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 2006; 7, 449−463.
188. Nunes, A., Al-Jamal, K. T., and Kostarelos, K. Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J. Controlled Release. 2012; 161, 290−306.
189. Nguyen, Q. T., Olson, E. S., Aguilera, T. A., Jiang, T., Scadeng, M., Ellies, L. G., and Tsien, R. Y. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc. Natl. Acad. Sci. U.S.A. 2010; 107, 4317−4322.
190. Jiang, T., Olson, E. S., Nguyen, Q. T., Roy, M., Jennings, P. A., and Tsien, R. Y. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. U.S.A. 2004; 101, 17867−17872.
191. Kateb, B., Chiu, K., Black, K. L., Yamamoto, V., Khalsa, B., Ljubimova, J. Y., Ding, H., Patil, R., Portilla-Arias, J. A., Modo, M., Moore, D. F., Farahani, K., Okun, M. S., Prakash, N., Neman, J., Ahdoot, D., Grundfest, W., Nikzad, S., and Heiss, J. D. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy? NeuroImage. 2011; 54, S106−124.
192. Cai, H., Shen, M., and Shi, X. Dendrimer-based medical nanodevices for magnetic resonance imaging applications, in Dendrimer-Based Drug Delivery Systems (Cheng, Y., Ed.), John Wiley & Sons, Inc., Hoboken, NJ, 2012; pp 463− 478.
193. Peng, C., and Shi, X. Dendrimer-related nanoparticle system for computed tomography imaging, in Dendrimer-Based Drug Delivery Systems (Cheng, Y., Ed.), John Wiley & Sons, Inc., Hoboken, NJ, 2012, pp 479−500.
194. Han, L., Li, J., Huang, S., Huang, R., Liu, S., Hu, X., Yi, P., Shan, D., Wang, X., Lei, H., and Jiang, C. Peptide-conjugated polyamidoamine dendrimer as a nanoscale tumor-targeted T1 magnetic resonance imaging contrast agent. Biomaterials 2011; 32, 2989− 2998.
195. Yan, H., Wang, L., Wang, J., Weng, X., Lei, H., Wang, X., Jiang, L., Zhu, J., Lu, W., Wei, X., and Li, C. Two-order targeted brain tumor imaging by using an optical/paramagnetic nanoprobe across the blood brain barrier. ACS Nano, 2012; 6, 410−420.
196. Demeule, M., Regina, A., Che, C., Poirier, J., Nguyen, T., Gabathuler, R., Castaigne, J. P., and Beliveau, R. Identification and design of peptides as a new drug delivery system for the brain. J. Pharmacol. Exp. Ther. 2008; 324, 1064−1072.
197. Schottelius, M., Laufer, B., Kessler, H., and Wester, H. J. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc. Chem. Res. 2009; 42, 969−980.
198. Lamy, C. M., Sallin, O., Loussert, C., and Chatton, J. Y. Sodium sensing in neurons with a dendrimer-based nanoprobe. ACS Nano, 2012; 6, 1176−1187.
199. Castano AP, Mroz P, Hamblin MR, Photodynamic therapy and antitumour immunity, Nat. Rev. Cancer 2006, 6:535–545.
200. Battah S, O’Neill S, Edwards C, Balaratnam S, Dobbin P, MacRobert AJ. Enhanced porphyrin accumulation using dendritic derivatives of 5‑aminolaevulinic acid for photodynamic therapy: An in vitro study. Int J Biochem Cell Biol 2006;38:1382‑92.
201. Battah S, Balaratnam S, Casas A, O’Neill S, Edwards C, Batlle A, et al. Macromolecular delivery of 5‑aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Mol Cancer Ther 2007;6:876‑85.
202. Di Venosa GM, Casas AG, Battah S, Dobbin P, Fukuda H, Macrobert AJ, et al. Investigation of a novel dendritic derivative of 5‑aminolaevulinic acid for photodynamic therapy. Int J Biochem Cell Biol 2006;38:82‑91.
203. Herlambang S, Kumagai M, Nomoto T, Horie S, Fukushima S, Oba M, et al. Disulfide crosslinked polyion complex micelles encapsulating dendrimer phthalocyanine directed to improved efficiency of photodynamic therapy. J Control Release 2011;155:449‑57.
204. Tao X, Yang YJ, Liu S, Zheng YZ, Fu J, Chen JF. Poly (amidoamine) dendrimer‑grafted porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy. Acta Biomater 2013;9:6431-8.
205. Barth RF, Soloway AH, Fairchild RG, Brugger RM. Boron neutron capture therapy for cancer. Realities and prospects. Cancer 1992;70:2995‑3007.
206. Barth RF, Adams DM, Soloway AH, Alam F, Darby MV, Boronated starburst dendrimer-monoclonal antibody immunoconjugates, 1994, 5:58–66.
207. Barth RF, Wu G, Yang W, Binns PJ, Riley KJ, Patel H, et al. Neutron capture therapy of epidermal growth factor (+) gliomas using boronated cetuximab (IMC‑C225) as a delivery agent. Appl Radiat Isot 2004;61:899‑903.
208. Yang W, Barth RF, Wu G, Tjarks W, Binns P, Riley K. Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl Radiat Isot 2009;67:S328‑31
209. Wu G, Yang W, Barth RF, Kawabata S, Swindall M, Bandyopadhyaya AK, et al. Molecular targeting and treatment of an epidermal growth factor receptor-positive glioma using boronated cetuximab. Clin Cancer Res 2007;13:1260–8.
210. Wolinsky JB, Grinstaff MW, Therapeutic and diagnostic applications of dendrimers for cancer treatment, Advanced Drug Delivery Reviews, 2008; 60:1037–1055
211. Kobayashi H, Kawamoto S, Bernardo M, Brechbiel MW, Knopp MV, Choyke PL, Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging, J. Control. Release, 2006; 111:343–351.
212. Yamada A, Hatano K, Koyama T, Matsuoka K, Esumi Y, Terunuma D. Syntheses of a series of lacto-N-neotetraose clusters using a carbosilane dendrimer scaffold. Carbohydr Res 2006;341: 467–73.
213. Yamada A, Hatano K, Koyama T, Matsuoka K, Takahashi N, Hidari KIPJ, et al. Lactotriaose-containing carbosilane dendrimers: syntheses and lectin-binding activities. Bioorg Med Chem 2007;15:1606–14.
214. Yamada A, Hatano K, Matsuoka K, Koyama T, Esumi Y, Koshino H, et al. Vero toxin-binding activities of carbosilane dendrimers periphery-functionalized with galabiose. Tetrahedron 2006;62:5074–83.
215. Bhadra D, Yadav AK, Bhadra S, Jain NK. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int J Pharm 2005;295:221–33.
216. Agrawal P, Gupta U, Jain NK. Glycoconjugated peptide dendrimersbased nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 2007;28:3349–59.
217. Joaquim Miguel Oliveira, António José Salgado, Nuno Sousa, João Filipe Mano, Rui Luís Reis, Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies-A review. Progress in Polymer Science. 2010; 35:1163–1194
218. Kobayashi H, Kawamoto S, Jo S-K, Sato N, Saga T, Hiraga A, et al. Renal tubular damage detected by dynamic micro-MRI with a dendrimer-based magnetic resonance contrast agent. Kidney Int 2002;61:1980–5
219. Rietveld IB, Kim E, Vinogradov SA. Dendrimers with tetrabenzoporphyrin cores: near infrared phosphors for in vivo oxygen imaging. Tetrahedron 2003;59:3821–31.
220. Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008;60:1037–55.
221. Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB, et al. In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 2004;5:2269–74.
222. Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, et al. HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem 2006;17:1109–15.
223. Baek M-G, Roy R. Synthesis and protein binding properties of Tantigen containing GlycoPAMAM dendrimers. Bioorg Med Chem 2002;10:11–7.
224. Baek M-G, Roy R. Simultaneous binding of mouse monoclonal antibody and streptavidin to heterobifunctional dendritic -lysine core bearing T-antigen tumor marker and biotin. Bioorg Med Chem 2001;9:3005–11.
225. Domanski DM, Klajnert B, Bryszewska M. Incorporation of fluorescent probes into PAMAM dendrimers. Bioelectrochemistry 2004;63:193–7.
226. Pun SH, Tack F, Bellocq NC, Cheng J, Grubbs BH, Jensen GS, et al. Targeted delivery of RNA cleaving DNA-enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther 2004;7:31–41.
227. Citro G, Perrotti D, Cucco C, D’Agnano I, Sacchi A, Zupi G, et al. Inhibition of leukemia cell proliferation by receptor-mediated uptake of cmyb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1992;89:7031–5.
228. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker Jr JR. PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 2006;7:572–9.
229. Islam MT, Majoros IJ, Baker Jr JR. HPLC analysis of PAMAM dendrimer based multifunctional devices. J Chromatogr B 2005;822:21–6.
230. Artemov D, Mori N, Ravi R, Bhujwalla ZM. Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 2003;63:2723–7.
231. Tomalia DA. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Nanomedicine 2006;2:309.
232. Glowacki J and Mizuno S, “Collagen scaffolds for tissue engineering,” Biopolymers, 2008; vol. 89, no. 5, pp. 338–344.
233. Augst AD, Kong HJ, and Mooney DJ, “Alginate hydrogels as biomaterials,”Macromolecular Bioscience, 2006; vol. 6, no. 8, pp. 623– 633.
234. Bajgai MP, Aryal S, Bhattarai SR, Bahadur KCR, Kim KW, and Kim HY, “Poly(𝜀-caprolactone) grafted dextran biodegradable electrospun matrix: a novel scaffold for tissue engineering,” Journal of Applied Polymer Science, 2008; vol. 108, no. 3, pp. 1447–1454.
235. Jiang T, Kumbar SG, Nair LS, and Laurencin CT, “Biologically active chitosan systems for tissue engineering and regenerative medicine,” Current Topics in Medicinal Chemistry, 2008; vol. 8, no. 4, pp. 354–364.
236. Ifkovits JL and Burdick JA, “Review: photopolymerizable and degradable biomaterials for tissue engineering applications,” Tissue Engineering, 2007; vol. 13, no. 10, pp. 2369–2385.
237. Kim M-H, Kino-Oka M, Kawase M, Yagi K, Taya M. Response of human epithelial cells to culture surfaces with varied roughnesses prepared by immobilizing dendrimers with/without d-glucose display. J Biosci Bioeng 2007;103:192–9.
238. Benhabbour SR, Sheardown H, Adronov A. Cell adhesion and proliferation on hydrophilic dendritically modified surfaces. Biomaterials 2008;29:4177–86.
239. Freed LE, Guilak F, XGuo XE et al., “Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling,” Tissue Engineering, 2006; vol. 12, no. 12, pp. 3285–3305.
240. Griffith LG and Naughton G, “Tissue engineering—current challenges and expanding opportunities,” Science, 2002; vol. 295, no. 5557, pp. 1009–1014.
241. Bosman AW, Janssen HM, and Meijer EW, “About dendrimers: structure, physical properties, and applications,” Chemical Reviews, 1999; vol. 99, no. 7, pp. 1665–1688.
242. Chan JCY, Burugapalli K, Naik H, Kelly JL, and Pandit A, “Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer,” Biomacromolecules, 2008; vol. 9, no. 2, pp. 528–536.
243. Wolinsky JB and Grinstaff MW, “Therapeutic and diagnostic applications of dendrimers for cancer treatment,” Advanced Drug Delivery Reviews, 2008; vol. 60, no. 9, pp. 1037–1055.
244. Boduch-Lee KA, Chapman , Petricca SE, Marra KG, and Kumta P, “Design and synthesis of hydroxyapatite composites containing an mPEG-dendritic poly(L-lysine) star polycaprolactone,” Macromolecules, 2004; vol. 37, no. 24, pp. 8959–8966.
245. Grabchev I, Staneva D, Chovelon JM, Photophysical investigations on the sensor potential of novel, poly (propylenamine) dendrimers modified with 1, 8- naphthalimide units, Dyes and Pigments, 2010, 85(3):189- 193.
246. Twyman LJ, Ellis A, Gittins PJ, Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries, Chem Commun., 2011, 48(1):154-156.
247. Gerald A, Ashton MR, and Khoshdel E, "Hydroxyl-Functionalized Dendritic Macromolecules in Topical Cosmetic and Personal Care Compositions, US Patent 6,582,685, June 23, 2004.
248. Tournilhac F and Pascal S, "Cosmetic or Dermatological Topical Compositions Comprising Dendritic Polyesters," US Patent 6,287,552, Sept. 11, 2001.
249. Wolf B, Florence S, "Cosmetic Compositions Having Keratolytic and Anti-Acne Activity," US Patent 5,449,519, Sept. 12, 1995.
250. Kluijtmans S and Bouwstra JB, "Dendrimer-Aminobutadiene-Based UV-Screens, European patent 1,784,455, May 16, 2007.
251. Bahary WS and Hogan MP. "Cleansing Compositions with Dendrimers as Mildness Agents," US Patent 5,658,574, Aug. 19, 1997.
252. Forestier S, Rollat-Corvol I, "Deodorant Composition and Use Thereof," US Patent 6,001,342, Dec. 14, 1999.
253. Allard D and Forestier S, "Self-Tanning Cosmetic Compositions," US Patent 6,399,048, June 4, 2002.
254. Sanghai B., Aggarwal G., & HariKumar S. Solid self microemulsifying drug deliviry system: a review. Journal of Drug Delivery And Therapeutics, 2013; 3(3), 168-174.
255. Dhakar Ram Chand, Maurya Sheo Datta, Tilak Vijay K, Gupta Anish K, A review on factors affecting the design of nasal drug delivery system, International Journal of Drug Delivery, 2011; 3 194-208
256. Dhakar Ram C, Maurya Sheo Datta, Saluja Vikrant, From formulation variables to drug entrapment efficiency of microspheres: a technical review, Journal of Drug Delivery & Therapeutics; 2012, 2(6), 128-133.
257. Asadujjaman Md., Mishuk Ahmed Ullah, Novel approaches in lipid based drug delivery systems, Journal of Drug Delivery & Therapeutics; 2013; 3(4):124-130
572 Views | 478 Downloads
How to Cite
Prajapati S, Maurya S, Das M, Tilak V, Verma K, Dhakar R. DENDRIMERS IN DRUG DELIVERY, DIAGNOSIS AND THERAPY: BASICS AND POTENTIAL APPLICATIONS. JDDT [Internet]. 17Jan.2016 [cited 4Mar.2021];6(1):67-2. Available from:

Most read articles by the same author(s)