Protective effects of Trigonella foenum-graecum crude extract over damage induced by Streptozotocin diabetes rats

Dalila Bencheikh 1,2*, Seddik Khennouf 1, Saliba Dahamna 1

1 Laboratory of Phytotherapy Applied to Chronic Diseases, Department of Biology and Animal Physiology, Faculty of Nature and Life Sciences, University Ferhat Abbas Setif 1, Setif, 19000, Algeria
2 Department of Biochemistry and Microbiology, Faculty of Sciences, University of Mohamed Boudiaf, M’sila, 28000, Algeria

ABSTRACT

The seeds of Trigonella foenum-graecum (fenugreek) are used for treatment of diabetes mellitus in traditional medicine. This paper examines the protective effects of fenugreek from the damage induced by streptozotocin diabetes rats. Tannins content of T. foenum-graecum was also estimated in vitro. Normoglycemic male Wistar rats, weighing 170-250 g were selected and randomly divided into five groups (n = 6): normal control diabetic + TFGE (200mg/kg), diabetic + TFGE (600mg/kg), diabetic + Gilib (3mg/kg), untreated group. Diabetes was induced after a single intraperitoneal injection of streptozotocin (50 mg/kg body weight) and Fenugreek was given every day via orogastric tube for 18 days. At the end of experiment, rats were sacarificed. Organ weight was estimated of all groups. Trigonella foenum-graecum administration significantly improved the polydipsia, polyphagia, and it also compensated weight loss of diabetic rats (P<0.05, P < 0.01). Moreover, fenugreek had a significant concentration of tannins (806.22 ±0.036 μg TAE/gE). The results revealed that fenugreek improves the damage in diabetic rats that in some ways validates the traditional use of this plant in treatment of diabetes.

Keywords: Antidiabetic activity, Protective effect, Streptozotocin, Tannins, Trigonella foenum-graecum

INTRODUCTION

Diabetes mellitus is a complex disease characterized by hyperglycemia and associated with insulin insufficiency or insensitivity of target organs to insulin. Hyperglycemia in diabetes produces the classical symptoms of polyuria, polydipsia, polyphagia and diabetes complications 1 which occur due to the abnormalities in carbohydrate, fat, and protein metabolism 2.

Streptozotocin (STZ) had toxic effects on islet beta cells that is why it widely used to induce insulin-dependent diabetes mellitus in experimental animals. 3 STZ produced severe lesions in pancreas, liver, kidney of progressively increased with time after treatment from seven to forty two days 4. The acute and chronic cellular injury, carcinogenesis, teratogenesis and mutagenesis were considered as biological actions of STZ 5.

Medicines from plant sources have played a vital role in the healthcare of the population. The crude extracts of varieties of plants have been used in clinical practice from long time. Because of diversity in phytoconstituents with unknown biological effect 7,8,9.

Trigonella foenum-graecum L. (Fenugreek) is an annual plant of the Fabaceae family. It has long been cultivated in the Mediterranean area, in India and in North Africa 10. Fenugreek is an annual grass with round stem, smooth, upright, from 20 to 50 cm with characteristic odor. Principal components of Fenugreek are mucilage, saponins, diosgenin, flavonoids, proline, prolin, essential oil, nicotinic acid, mineral elements: iron, phosphorus, calcium, vitamins, A, B1, C, alkaloids (trigonelline...), choline... 11.

This plant regarded as a panacea on popular medical. The use of fenugreek is common in various forms: seed decoctions, flour mixed with honey, or the vinegar. The most properties are polishing substance, anabolism, aperitif, emollient, febrifuge, galactagogue, hypoglycemic, tonic 11. Therefore, this study was conducted to assess the tannins content and to evaluate the anti-diabetic effect of Trigonella foenum-graecum L. crude extract in normal and diabetic rats and their role to improve the damage over diabetes (polyuria, polyphagia and organs weight).

MATERIALS AND METHODS

Reagents and standards

Methanole (MeOH), Tannic acid, Streptozotocin. The products used were purchased from Merck and Sigma.
Plant samples
Seeds of *Trigonella foenum-gracum* (Fenugrec, elhalba) were collected from Setif, Algeria. The plant was authenticated by Pr. Laouer Hocine (University FerhatAbbass, Setif-1, Algeria). The plant samples were air dried in shadow and powdered.

Extraction of plant phenols
Extractions of *Trigonella foenum-gracum* seeds polyphenols was carried out according to [12] with slight modification. 1 liter of 85% methanol was added to 100g of powdered plant material. After 3days, the filtration of the residue obtained was re-extracted with 1 liter of 50% methanol for 24 h. Under reduced pressure (at 40 °C) using a rotary evaporator, the first and the second extractions were concentrated to obtain methanolic extract of *Trigonella foenum-gracum* (TFGE). Then, the extract were stored at -20 °C until use.

Animals
Male adult albino rats weighing 170–280 g obtained from Pasteur Institute (Algiers, Algeria) were maintained in an air-conditioned animal room (25 ± 2°C), with 12/12h light/dark cycle and given free access to water and food for 7days, prior to experiments.

In vitro: Determination of tannins content
Tannins content was estimated by the method of [12]. Briefly a volume of plant extract was diluted to give a concentration of total polyphenols approximately 500 µg/ml and mixed with an equal volume of haemolysed sheep blood (Absorbance equal to 1.6), after 10 minutes this solution was centrifuged for 20 minutes and the absorbance of the supernatant was measured at 576 nm and the effectiveness of the precipitation of the solutions tested is expressed as µg tannic acid equivalent/g extract.

Experimental induction of diabetes
Anti-diabetic activity of *T. foenum-gracum* extracts was evaluated by Streptozotocin induced rats according to the method of [14] with slight modifications. By single intraperitoneal injection of a freshly prepared streptozotocin (STZ) solution (50 mg/kg) to overnight fasted rats, diabetes was induced. Rats with blood glucose levels ≥250 mg/dl were considered diabetic and were used for the study.

Experimental designs
Male Wistar rats weighing 170–280 g were divided into five equal groups (n = 6).

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>TFGE (200mg/kg)</th>
<th>TFGE (600mg/kg)</th>
<th>Glibil (3mg/kg)</th>
<th>Untreated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water intake (ml/day)</td>
<td>496.6±5.77</td>
<td>605.3±7.07***</td>
<td>535±7.07*</td>
<td>715±7.17***</td>
<td>1070±14.14***</td>
</tr>
<tr>
<td>Food intake (g/day)</td>
<td>198.55±5.95</td>
<td>216.25±11.75***</td>
<td>198.6±5.9ns</td>
<td>207.85±3.35**</td>
<td>225.95±21.45***</td>
</tr>
</tbody>
</table>

The values present the mean ± SEM for six rats in each group (ns: no significant difference, *p < 0.05, ** p < 0.01, *** p < 0.001) compared to control group.

In the present study, streptozotocin was used in a dose of 50 mg/kg body weight intraperitoneal injection for producing hyperglycaemia in accordance with [15] used the same dose of STZ but intravenously in rats. While [16] used high dose of STZ (90 mg/kg body weight intraperitoneally in rats). The selection of higher dose was not tolerated and survive for rats and should adopted the lower dose. Traditional medicine use the food tannins because of it’s good...
preventive on human health. Also, some tannins are considered as antioxidants. The most properties of tannins are cardio-protective, anti-inflammatory, anti-carcinogenic and antimutagenic, and others. They act as free radical scavengers or activate antioxidant enzymes. Also, in diabetic rats, tannins have been considered as anti-hyperglycemic agents. The phenolic compounds could reduce glycemia by reduction in the absorption of nutrients (food intake).

Organs weight

The results showed that organs weight changed slightly compared to control group (Table 2). Heart and lungs weights of untreated or diabetic rats (0.65±0.03 g; 1.23±0.05 g respectively) showed a significant decrease (P <0.05) as compared to normal control rats (0.88±0.16 g; 1.68±0.27 g respectively). Treatment with two doses extracts produced no significant change of the testicles (2.66±0.6 g; 2.51±0.28 g respectively) and stomach (1.53±0.015 g; 1.41±0.11 g respectively) whereas, the values of untreated group was being (2.43±0.05 g; 1.40±0.10 g) respectively. Concerning pancreas the present data showed a higher significant decrease (P <0.001) in untreated group when compared with control group (Table 2). So, all the treatment with two doses extract showed a detectable elevation of all organs weight in diabetic rats.

Glibil treated group were reported to have measurable effect on organs weight (Heart, lungs, stomach, spleen, testicles). Whereas, Untreated group remained the lower values.

| Table 2: Organs weight changes in the treated and untreated animals (g) |
|--------------------------|----------------|----------------|----------------|----------------|
| | Control | TFGE (200mg/kg) | TFGE (600mg/kg) | Glibil (3mg/kg) | Untreated |
| Heart | 0.88±0.16 | 0.66±0.08* | 0.63±0.07* | 0.67±0.11* | 0.65±0.03* |
| Liver | 5.17±0.94 | 4.01±1.29* | 4.09±1.06* | 4.33±0.45** | 4.15±0.7** |
| Testicles | 3.14±0.22 | 2.66±0.6ns | 2.51±0.28ns | 2.9±0.37ns | 2.43±0.05ns |
| Kidneys | 1.80±0.06 | 1.66±1.13ns | 1.26±0.8*ns | 1.53±0.02ns | 1.5±0.14*** |
| Spleen | 1.02±0.10 | 0.95±0.14 ns | 0.74±0.11* | 0.6±0.01** | 0.61±0.07*** |
| Stomach | 1.55±0.19 | 1.53±0.15ns | 1.41±0.11ns | 1.43±0.13ns | 1.40±0.10 ns |
| Pancreas | 0.25±0.03 | 0.20±0.02ns | 0.15±0.02* | 0.14±0.02** | 0.12±0.02*** |

Value are mean ± S.E.M (n=6) (ns: no significant difference, *p < 0.05, ** p < 0.01, *** p < 0.001) compared to control group.

A notable significant decrease of liver in untreated group (P < 0.001) when compared to control one (Table 2). The recorded values of diabetic rats showed a high decrease in kidneys weight (0.85±0.14 g) as compared with the normal control rats (1.80±0.06 g). An increase (hypertrophy) in the weight of liver in proportion to the body weight was observed in untreated group were compared with control group despite the fact that the mean weight of all the animals in treated group with TFGE, Glibil and untreated groups decreased (Table 3).

| Table 3: Comparison between organ weight in the treated and untreated animals in grams to weight of animal in kilograms of rats (X ± S.E.M.) |
|--------------------------|----------------|----------------|----------------|----------------|
| | Control | TFGE (200mg/kg) | TFGE (600mg/kg) | Glibil (3mg/kg) | Untreated |
| Body weight | 257.14±13.16 | 209.48±12 | 212±14.06 | 226.87±8.12 | 202.40±2.68 |
| Liver | 19.67g/kg | 19.14g/kg | 19.26g/kg | 19.08g/kg | 20.50g/kg |
| Kidneys | 7 g/kg | 7.92 g/kg | 6.12g/kg | 6.74g/kg | 7.41g/kg |
| Pancreas | 0.97g/kg | 0.95g/kg | 0.70g/kg | 0.61g/kg | 0.59g/kg |

The selective destruction and disappearance of insulin-producing cells (β cells) attributed to the decrease in the weight of pancreas. Alkylation of DNA, produced hyperglycaemia and necrotic lesions was caused by injurious effects of STZ leads to loss of organs weight. The results of the present study are in agreement with the findings of. Also, concluded that the reduction in body weight was associated with increase (hypertrophy) in the relative weight of kidney and liver whereas the pancreas weight was unaffected.

CONCLUSION

The inclusion of the different two doses of TFGE (200mg/kg, 600mg/kg) resulted in increased weight near to normal level. Also, TFGE showed a considerable effect on the water and food intake. The ameliorating effects of Trigonella foenum-graecum could be related to its tannins constituents. In conclusion, using Fenugreek seeds exhibits preventive effects against diabetes which, in turn, validates the traditional use of the plant in the treatment of diabetes mellitus. Further comprehensive chemical and pharmacological investigations with isolated active principles of the plant may shed more light on the use of fenugreek for protection in diabetes.
CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by the Algerian Ministry of Higher Education and Scientific Research (MERS).

REFERENCES