Phytochemical Screening, GC-MS Analysis and Antibacterial Evaluation of Ethanolic Leaves Extract of *Avicennia marina*

Vasanthakumar K*, Dineshkumar G, Jayaseelan K

P.G. and Research Department of Zoology and Biotechnology, A.V.V.M. Sri Pushpam College, Poondi-613 503, Thanjavur District, Tamil Nadu, India.

ABSTRACT

Medicinal plants were used to treat diseases traditionally since ancient times. The present work aims to investigate the bioactive constituents through GC MS analysis of ethanolic leaf extracts of *A. marina*. Phytochemical screening confirmed the presence of Alkaloids, Flavonoids, Phenols, Reducing sugars, Saponins, Tannin, Glycoside, Triterpenoids and Carbohydrate in *A. marina*. The characterization of the compounds by Gas Chromatography – Mass Spectrometry (GC-MS) technique has reported the presence of thirty compounds in *A. marina* leaves. These compounds possess different pharmacological properties like anti-microbial, antioxidant, anti-inflammatory and hepatoprotective properties.

Keywords: *Avicennia marina*, GC-MS, Bioactive compounds, Antibacterial activity.

Article Info: Received 09 July 2019; Review Completed 17 August 2019; Accepted 23 August 2019; Available online 30 Aug 2019

Cite this article as: Vasanthakumar K, Dineshkumar G, Jayaseelan K, Phytochemical Screening, GC-MS Analysis and Antibacterial Evaluation of Ethanolic Leaves Extract of *Avicennia marina*, Journal of Drug Delivery and Therapeutics. 2019; 9(4-A):145-150

http://dx.doi.org/10.22270/jddt.v9i4-A.3431

Address for Correspondence: Vasanthakumar K, P.G. and Research Department of Zoology and Biotechnology, A.V.V.M. Sri Pushpam College, Poondi-613 503, Thanjavur District, Tamil Nadu, India.

INTRODUCTION

Plants play a significant role in the prevention and treatment of diseases and can even prevent and reduce the adverse effects of conventional treatments [1]. They can be a source of chemical compounds of biological and pharmacological importance. History revealed that plants are vital sources of many successful drugs, and they are important for screening of new lead compounds [2]. Mangrove plants are used in many traditional medicine for the treatment of severe diseases. The mangrove plants have also been proved for antiviral, antibacterial and antitumor properties [3-4]. Mangroves have been a source of several bioactive compounds and they have been used in folklore medicines and extracts have proven activity against human, animal and plant pathogens. Secondary metabolites like alkaloids, flavonoids, steroids, phenolics and terpenoids have been characterized from mangrove plants and possess toxicological, pharmacological and ecological importance [5-6].

Avicennia marina one of the common tree species of mangrove forest ecosystem belonging to the family Verbenaceae, is a cosmopolitan species widely distributed along tropical and subtropical coastlines. The bark, leaves and fruits of *A. marina* have reported as antibacterial, antifungal, antiviral agents and also possess antitumor, antiplasmodial, antiulcer properties [7-12]. The determination of phytoconstituents is largely performed by relatively cost and frequent laborious techniques such as gas (GC) and liquid (LC) chromatography united with specific detection schemes [13]. Analysis of chemicals in small amount has become easier and much more cost-effective due to the development of hyphenated chromatographic techniques such as GC or LC-MS. GC-MS analysis can identify pure compounds present at least less than 1gm [14]. However, simple and cost-effective tests are necessary to detect the phytocomponents.

Gas Chromatography – Mass Spectrum (GC-MS) technique has been increasingly employed to analyze the secondary metabolites present in the medicinal plants, as this technique has been proved to be a best valuable method for the analysis of essential oil, alcohols, acids, esters, alkaloids, steroids, amino and nitro compounds [15]. The biotechnological industries shows interest on medicinal plants and as well as most of the drug industries depend on plant parts for the future production of pharmaceutical compounds. With this background the present study was
aimed to identify the phytoconstituents present in *Avicennia marina*.

METHODS

Collection and extraction of mangrove plant leaves

Fresh and Healthy leaves of *Avicennia marina* were collected from their natural habitat of Muthupet mangrove in Thiruvurur district, Tamil Nadu, India and authenticated by professionals in the Department of Botany, St. Joseph's College, Tiruchirappalli, Tamil Nadu, India. The herbarium number of the plant is KVK003. After washing with distilled water, the leaves were shade dried, powdered and extracted separately in ethanol. Plant powder (20 gm) was taken and soaked in 100 ml of solvent and kept in shaker for 24 hrs. After centrifugation at 5000 rpm, the solvent phase was separated and evaporated. The crude was stored at 40º C and used for further studies.

Phytochemical Qualitative Analysis

The ethanolic leaves extracts were assessed for the existence of the phytochemical analysis by using the standard methods [16-19].

Gas Chromatography-Mass spectrometry (GC-MS) analysis

Clarus 500 Perkin- Elmer (Auto System XL) Gas Chromatograph equipped and coupled to a mass detector Turbo mass gold – Perking Elmer Turbosam 5.2 spectrometer with an Elite-1 (100% Dimethyl ply siloxane), 300 m x 0.25 mm x 1 μm df capillary column was used for GCMS analysis. Initially, the instrument was set to temperature of 110ºC, and then maintained at the same temperature for 2 min. At the end of this period, the oven temperature was raised upto 280ºC, at the rate of an increase of 5ºC per minute and maintained for 9 min. The temperature of injection port was ensured as 250ºC and the flow rate of Helium as 1 ml/min. The ionization voltage was 70 eV. The samples were injected gradually in split mode as 10:1. The range of mass spectrum was set at 45-450 (mhz). The chemical constituents were identified by GC-MS. The fragmentation patterns of mass spectra were compared with those stored in the spectrometer database using National Institute of Standards and Technology Mass Spectral database (NIST-MS). The percentage of each component was calculated from relative peak area of each component in the chromatogram.

Identification of Compounds

Interpretation of mass spectrum of GC-MS was conducted using the database of National Institute Standard and Technology (NIST) having more than 62,000 patterns. The unknown component’s spectrum was compared with the spectrum of the known components stored in the NIST library. The structure, name and molecular weight of the components of the test materials was ascertained.

Evaluation of extract’s antibacterial activity

The antibacterial activity of the mangrove leaf extract was evaluated using disc diffusion method. One loop of each bacterial stock culture was sub-cultured on Mueller-Hinton agar, then the paper discs (Whatman filter paper, 6mm diameter), which were dipped in different extract concentrations, were laid on the surface of the medium. The extract concentrations (5, 10, 15, 20, 25, 30, 35, 40 mg/ml) were prepared using sterile distilled water. All the culture mediums were incubated for 24 h at 37 ºC, then the diameter of the growth inhibition zone was carefully measured using a ruler [20]. All experiments were performed in triplicate.
Table 2: GC-MS analysis of ethanolic extract of *Avicennia marina* leaves

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Peak Name</th>
<th>Retention time</th>
<th>Peak area</th>
<th>% Peak area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4-Penten-2-ol</td>
<td>7.08</td>
<td>4992661</td>
<td>0.9804</td>
</tr>
<tr>
<td></td>
<td>Formula: C₅H₁₀O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>2-Butene, 2-methyl-</td>
<td>10.92</td>
<td>1317081</td>
<td>0.2586</td>
</tr>
<tr>
<td></td>
<td>Formula: C₅H₁₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Triquinacene</td>
<td>11.59</td>
<td>736375</td>
<td>0.1446</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₀H₁₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Nonanoic acid</td>
<td>13.75</td>
<td>1902114</td>
<td>0.3735</td>
</tr>
<tr>
<td></td>
<td>Formula: C₉H₁₈O₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 158</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>2(R),3(S)-1,2,3,4-Butanetetrol</td>
<td>14.88</td>
<td>108862904</td>
<td>21.3770</td>
</tr>
<tr>
<td></td>
<td>Formula: C₄H₁₀O₄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 122</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>2-Butanone, 3-cyclohexylidene-4-ethyl-</td>
<td>15.82</td>
<td>976629</td>
<td>0.1918</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₄H₂₄O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Non-3,5-dien-2-ol</td>
<td>16.54</td>
<td>768598</td>
<td>0.1509</td>
</tr>
<tr>
<td></td>
<td>Formula: C₉H₁₆O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>2,2,6,8,12-Pentamethyl-7,9,10-trioxatricyclo[6.2.0.0₁,₆]dodec-11-ene</td>
<td>17.80</td>
<td>2488335</td>
<td>0.4886</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₄H₂₂O₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 238</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>D-Allose</td>
<td>18.33</td>
<td>3060763</td>
<td>0.6010</td>
</tr>
<tr>
<td></td>
<td>Formula: C₆H₁₂O₆</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Dodecanoic acid</td>
<td>18.55</td>
<td>11052012</td>
<td>2.1702</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₂H₂₄O₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Nonanoic acid, 3-methylbutyl ester</td>
<td>18.85</td>
<td>2957382</td>
<td>0.5807</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₄H₂₂O₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 228</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Heptanoic acid, 3,5,5-triethyl-</td>
<td>19.20</td>
<td>5154689</td>
<td>1.0122</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₃H₂₆O₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>3-Cyclohexen-1-carboxaldehyde, 3-methyl-</td>
<td>19.39</td>
<td>8454506</td>
<td>1.6602</td>
</tr>
<tr>
<td></td>
<td>Formula: C₈H₁₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>2-Naphthalenemethanol, α-methyl-,(±)-</td>
<td>19.59</td>
<td>712455</td>
<td>0.1399</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₂H₁₂O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Benzoinitrile, 4-ethenyl-</td>
<td>20.47</td>
<td>975220</td>
<td>0.1915</td>
</tr>
<tr>
<td></td>
<td>Formula: C₉H₇N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Phenol, 2,6-dimethoxy-4-(2-propenyl)-</td>
<td>20.71</td>
<td>1472950</td>
<td>0.2892</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₁H₁₄O₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Benzoic acid, 3,4,5-trimethoxy-</td>
<td>21.78</td>
<td>4779990</td>
<td>0.9386</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₀H₁₂O₅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>3,7,11,15-Tetramethyl-2-hexadecan-1-ol</td>
<td>22.18</td>
<td>34397904</td>
<td>6.7546</td>
</tr>
<tr>
<td></td>
<td>Formula: C₂₀H₄₀O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 296</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>2-Pentadecanone, 6,10,14-trimethyl-</td>
<td>22.35</td>
<td>2539396</td>
<td>0.4987</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₈H₃₆O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Butanoic acid, 3-methyl-,(3,7-dimethyl-2,6-octadienyl ester</td>
<td>22.57</td>
<td>7233219</td>
<td>1.4204</td>
</tr>
<tr>
<td></td>
<td>Formula: C₁₀H₁₂O₅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW: 212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Formula</td>
<td>MW</td>
<td>%</td>
<td>Elution Time (min)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>----</td>
<td>----</td>
<td>-------------------</td>
</tr>
<tr>
<td>21. n-Hexadecanoic acid</td>
<td>C_{16}H_{32}O_2</td>
<td>256</td>
<td></td>
<td>24.88</td>
</tr>
<tr>
<td>22. Hexadecanoic acid, ethyl ester</td>
<td>C_{18}H_{36}O_2</td>
<td>284</td>
<td></td>
<td>25.06</td>
</tr>
<tr>
<td>23. 4-(3,5-Di-tert-butyl-4-hydroxyphenyl) butyl acrylate</td>
<td>C_{21}H_{32}O_3</td>
<td>332</td>
<td></td>
<td>25.41</td>
</tr>
<tr>
<td>24. 4-Oxazolecarboxylic acid, 4,5-dihydro-2-phenyl, 1-methylethyl ester</td>
<td>C_{13}H_{15}NO_3</td>
<td>233</td>
<td></td>
<td>27.28</td>
</tr>
<tr>
<td>25. Phytol</td>
<td>C_{20}H_{40}O_0</td>
<td>296</td>
<td></td>
<td>28.03</td>
</tr>
<tr>
<td>26. (E)-9-Octadecenoic acid ethyl ester</td>
<td>C_{20}H_{38}O_2</td>
<td>310</td>
<td></td>
<td>29.04</td>
</tr>
<tr>
<td>27. Octadecanoic acid, 2-methyl-, methyl ester</td>
<td>C_{20}H_{40}O_2</td>
<td>312</td>
<td></td>
<td>29.50</td>
</tr>
<tr>
<td>28. cis-9-Hexadecenal</td>
<td>C_{16}H_{30}O_0</td>
<td>238</td>
<td></td>
<td>32.96</td>
</tr>
<tr>
<td>29. 2-Hydroxy-2-methyl-but-3-enyl 2-methyl-2(Z)-butenoate</td>
<td>C_{13}H_{16}O_3</td>
<td>184</td>
<td></td>
<td>32.43</td>
</tr>
<tr>
<td>30. Squalene</td>
<td>C_{30}H_{50}O_0</td>
<td>410</td>
<td></td>
<td>41.30</td>
</tr>
</tbody>
</table>

Figure 1: GC-MS CHROMATOGRAM OF A. marina leaves
DISCUSSION

Phytochemicals are responsible for medicinal activities of the plants. Based on this fundamental knowledge several pharmaceutical industries are established. The phytochemical constituents that are playing a significant role in medicines can be identified using crude extracts/drugs of the plants [21]. Nowadays the organic compounds from plants have been studied and their activity has increased. The combination of GC and MS, which are best separation technique and best identification technique respectively made GC-MS as an ideal technique for volatile and semi-volatile bioactive compound’s qualitative analysis [22]. The ethanolic extract of *A. marina* was analyzed by GCMS to detect various compounds with the help of NIST library. The GC-MS analysis revealed 30 chemical compounds. Squalene (41.30 RT) is the highest retention time chemical compound and 4-Penten-2-ol (7.08) is the lowest retention time chemical compound. The compound Nonanoic acid is a C9 straight-chain saturated fatty acid which occurs naturally as esters of the oil of palmarium which has antifungal properties, and is also used as a herbicide. It is also used in the preparation of plasticisers and lacquers [23]. The compound n-Hexadecanoic acid, Hexadecanoic acid, methyl ester, Benzoic acid, D-Allose showed pharmacological activity as reported in the plant *Evolvulus alsinoides* [24]. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1 [25-26]. Phytol have been reported in previous studies, including its activity against Mycobacteria, anticonvulsant, antipsychotic and anticancer activities [27-30]. Squalene is a natural compound, a linear triterpen synthesized in plants [31]. It is a natural antioxidant molecule that protects cells from oxidative damage by exposure to ultraviolet light and other external sources. This molecule participates as a defense mechanism for the internal and external tissues of the skin in the human body [32]. Anti-bacterial activity showed that the inhibition zones were found increased considerably when the concentration rate increased. The results of antibacterial activity revealed that ethanolic leaves extract of *A. marina* have significant activity against tested pathogen and maximum growth inhibition was observed against *Pseudomonas aeruginosa* (12 mm) followed by *Klebsiella pneumoniae* (10 mm). Similar results were described by Tambekar, who reported that the antibacterial potential of *Dashmula churna* against *S. aureus*, *S. epidermidis*, *P. vulgaris*, *S. typhi*, *B. subtilis*, *E. coli*, *K. pneumoniae*, *E. aerogenes* and *P. aeruginosa* and its usefulness in treatment of the bacterial infections [33]. The compounds identified by the initial qualitative analysis and GCMS analysis have many uses in medical field. Each compounds that are identified in the extract have their unique character to treat a variety of diseases. Further studies are required to reveal its significance in specific field to treat the diseases properly.

CONCLUSION

The presence of various bioactive compounds in the *Amarina* justifies the use of whole plant for various ailments by traditional practitioners. However the isolation of individual phytochemical compound and analyzing their biological activity will definitely yield productive results. The results of this study offer a base of using *Amarina* as herbal alternative for the synthesis of antimicrobial agents. From the results, it could be concluded that *Amarina* contains various bioactive compounds. Hence, it can be recommended as a plant having phytopharmaceutical importance.

CONFLICT OF INTEREST STATEMENT

We declare that we have no conflict of interest.

REFERENCES

