New Frontier in the Treatment of Diabetes

Bhatt Abhishek Jayesh*; Vyasa Arya Sudhanshu; Shah Devarshi Priyesh;
SAL Institute of Pharmacy; Opp. Science City, Bhadaj Road, Ahmedabad-380060, India

ABSTRACT

Diabetes mellitus is a group of metabolic diseases recognized by chronic hyperglycemia resulting from defects in secretion in insulin, insulin action or both. There are different types of diabetes like Type 1, type 2, gestational diabetes, secondary diabetes, Wolfram syndrome and autoimmune polyglandular syndrome. Type 1 and type 2 diabetes are most common type of diabetes. Polydipsia, polyuria, polyphagia, weight loss slow wound healing, etc. are common symptoms of Diabetes. Diabetes can be genetic; autoimmune, medical related or even diet related. In this article causes and treatment of diabetes is discussed in detail. It includes glimpse of novel technologies like patches, pump and pens, etc. It also includes momentary of other treatment like oral and Inject able hypoglycemic drug and surgical treatments. A glance of latest innovation for measuring glucose level in body with help of sweat, breath and saliva are explained.

Keywords: Diabetes; Type 2 Diabetes Mellitus (TY2DM), Polydipsia, polyuria, polyphagia, clicksoft microinjection, insulin pen, v-go

Introduction

Diabetes mellitus is a group of metabolic diseases recognized by chronic hyperglycemia resulting from defects in secretion in insulin, insulin action or both [1]. Around 1500 B.C.E. ancient Egyptians were first to recognized Diabetes, it was considered a rare condition in which a person urinated excessively and lost weight. Earlier before 200 years diabetes was not documented and nothing was known about mechanism of action. No effective treatment was available and it was fatal within weeks to months after its diagnosis owing to insulin deficiency.[2] In 200 years, major approaches have been done in understanding of the underlying causes of diabetes and the approach to its prevention and treatment.[2] Diabetes is associated with reduction in life expectancy but outlook of disease has changed and patients lead active and productive life's for many years after diagnosis. Now a days many therapies are available for treating hyperglycemia and its complications but pathway to its cure has remained elusive. Since 1923, 10 scientists have won Nobel Prize for diabetes related investigations[2].

Causes of diabetes [3]

Main causes of diabetes are complex and cases with one of the two processes;

1. Due to metabolism: - Body ability to use insulin can be impaired due to lifestyle factors like overeating, physical inactivity and obesity. This is called insulin resistance. Genetics, family history and age can be included in uncontrollable risk factors.

Metabolic form of diabetes includes A. Type 2 diabetes and B. Gestational diabetes

2. Autoimmune: -Insulin-producing beta cells of the pancreas can destroyed mistakenly by body immune system. Causes of autoimmune diabetes are poorly understood but family history and genetics play a role. It includes A. Type 1 Diabetes

Diabetes is considered as a multi-factorial, involving risk factors and predisposing conditions. In many cases environment or genetics may contribute to a person's diabetes. Autoimmune diabetes is more common in white people but type 2 and gestational diabetes is common among other ethnicities.

Prediabetes, insulin resistance and metabolic syndrome are strong risk factors. Major causes of diabetes are:-

1. Genetics and family history: - Maturity-onset diabetes of young (MODY) and Wolfram syndrome can be caused by certain genes.
2. Weight and Body type: - Obesity and overweight are leading factors in type 2 diabetes. Excess fat around the abdomen enhances the insulin resistance and metabolic syndrome.

Sufferers of type 1 diabetes are of normal weight but recent research indicates the development of type 1 diabetes due to obesity.

3. Level of physical activity: - Epidemics of obesity and diabetes is blamed due to lack of regular exercise.

4. Diet: - Development of diabetes due to the impact of diet is controversial. Studies show that heavy consumption of soft drink and other simple carbohydrates to risk of metabolic diabetes. Foods which have low glycemic index to reduced risk.

5. Other diseases: - High blood pressure, hyperlipidemia, polycystic ovarian syndrome, asthma and sleep apnea like medical conditions have been linked to type 2 diabetes. Type 1 diabetes have been linked to celiac disease (gluten intolerance) and other diseases. Many diseases may cause secondary diabetes include pancreatitis, hemochromatosis, Cushing’s disease and acromegaly, Down syndrome etc.

6. Medical Treatment: - Secondary diabetes may result due to hormonal therapies, iatro致敬 diuretics, beta blockers, immunosuppressive etc. Drugs like pentamidine (for pneumonia) and L-asparaginase have been connected with type 1 diabetes.

7. Smoking: - Cigarette smoking is factor for type 2 diabetes.

8. Alcohol: - It is risk factor for diabetes

Types of Diabetes.[3]

Various type of diabetes are known to man and some it are mentioned below:

1. **Type 1 diabetes: -** In the insulin making beta cells of pancreases are mistakenly destroyed by our body our immune mistake. This an auto immune diseases. Its development is quicker than any other from of diabetes. Children, adolescent and young adult are usually diagnosed. Insulin must be administered regularly to survive.

Type 1 diabetes used to be called juvenile diabetes and insulin-dependent diabetes mellitus (IDDM). These are not accurate because other form of diabetes can be developed by children and adults can develop type 1 diabetes and insulin therapy is required for other forms of diabetes.

Latent autoimmune diabetes of adulthood (LADA) is variation of type 1 diabetes after usually occurs later in life after 30 years.

2. **Type 2 diabetes:** Metabolic disorder involving insulin resistance and excess weight. In this type of diabetes insulin is initially produced by pancreases but body has trouble using this glucose controlling hormone. Ultimately enough insulin is produced to respond to body requirements. According to the international Diabetes Federation, type 2 diabetes accounts for 85% to 90% in developed nation and more number of cases in developing nation. Type 2 diabetes is most common form of diabetes.

Development of diabetes may take decades or years. It is usually preceded by prediabetes, in which blood sugar is above normal but not high enough for diagnosis of diabetes. Diabetes prevention program and other research programs have demonstrated that escalation of prediabetes to the type 2 diabetes can be delayed by losing weight by diet and proper exercise.

Type 2 diabetes used to be called adult-onset diabetes and non-insulin dependent diabetes mellitus (NIDDM). This terms are not correct because children can develop this disease and some people may require insulin therapy.

3. **Gestational Diabetes:** A temporary metabolic disorder that can develop in non-diabetic women during pregnancy, usually in third trimester. Family history of diabetes, excess weight and hormonal changes contribute to this diabetes. According to American diabetes Association about 4% of pregnant women develop gestational diabetes. Preeclampsia, premature delivery, oversized infant (macrosomia) and jaundice and breathing problem in occur in infant and mother may suffer some problem due to gestational diabetes. This disease ends with pregnancy but child and mother are at risk of developing type 2 diabetes later in life.

4. **Secondary Diabetes:** Diabetes caused by another condition. Pancreatidis, cystic fibrosis, Down syndrome and hemochromatosis to medical treatment including corticosteroids, other immunosuppressive, diuretics and pancreatectomy are some of many potential sources of secondary diabetes. An uncommon disease caused by a genetic defect inherited from a parent, it is known as Maturity-onset diabetes of young (MODY). Generally diagnosed by the age of 25, in people of normal weight. MODY may be classified in type 2 diabetes or secondary diabetes but considered a separate condition.

5. **Wolfram Syndrome:** A genetic disorder that involves insulin-dependent diabetes, vision problems, deafness and diabetes insipidus.

6. **Autoimmune polyglandular syndrome (APS):**- Group of autoimmune endocrine diseases. Two of the three forms of this syndrome is features in type 1. Unstable diabetes, also known as brittle or labile diabetes, is term used to identify any case of poorly controlled diabetes regardless of type. Diabetes mellitus (sugar diabetes) involve all these condition. Water diabetes (Diabetes insipidus) is an endocrine disorder in which kidney release too much water.

Signs and symptoms of diabetes:[4,3]

Sometimes no symptoms are experienced in some cases and diabetes may go undetected because its symptoms many attribute to another to many other causes.

Some symptoms and signs of diabetes include:-

- Polydipsia (Excessive thirst)
- Polyuria (Excessive urination) and dehydration
- Polyphagia (Excessive hunger or appetite)
- Unexplained weight loss
- Blurred vision, nearsightedness and other vision disorders
- Frequent infection like skin infection, thrush, gingivitis, urinary tract infections and yeast infection
- Slow healing of sores
- Skin problems, such as itchiness or acanthosis nigricans
Fatigue, lethargy or drowsiness
- Shakiness or trembling
- Mood swings or irritability
- Dizziness or fainting
- Numbness, tingling or pain in feet, hands or legs,

Pathophysiology of diabetes:

1. **Type 1 diabetes**: It results due to the combination of environmental and genetic influences. It develops due to destruction of insulin producing beta cells of pancreas by body’s immune system. Development of T-cell dependent autoimmunity in genetically susceptible individuals may be triggered by toxins or virus or dietary factors. Autoimmunity is manifested by detectable antibodies to ICA512/IA-2, insulin autoantibody, and glutamic acid decarboxylase.

Due to slow destruction of beta cells prediabetes may occur and it will develop into DM. Other autoimmune may also occur like Hashimoto’s thyroiditis, Addison’s disease and myasthenia gravis.

2. **Type 2 diabetes**: Main indicator of type 2 is insulin insensitivity because of insulin resistance, declining insulin production, and ultimately pancreatic beta-cell failure. Due to this glucose transport to liver, muscle cells and fat cells is reduced. Hyperglycemia occurs due to the increase in breakdown of fat. Hepatic glucose levels and glucagon rise during fasting are not depressed with a meal. Hyperglycemia results due to inadequate levels of insulin and insulin resistance. A large number of individual suffering from type 2 DM are obese with central visceral adiposity. Adipose tissue plays an important in pathogenesis of type 2 DM.

Theory used to explain this link is the visceral hypothesis giving a key role in elevated non-esterified fatty acid concentration, two emerging therapies are ectopic fat storage syndrome.[3]

World scenario of diabetes:

It is estimated that 366 million people had DM in 2011, by 2030 this number will be 522 million. 80% of people with DM live in low and middle income countries. DM caused 4.6 million deaths in 2011. By year 2030, 439 million would have type 2 DM. Majority of DM cases in Africa is on type 2 with less than 10% of DM cases being type 1. A center for diseases control and prevention 2011 reports that DM affects about 25.8 million people in US in 2010 with 90 to 95% of them being type 2.[5]

In 2000, India (31.7 million) was the country with highest number of DM cases followed by China (20.8 million) with US (17.7 million) in second and third place respectively. By 2030 DM may have affected 79.4 individuals in India, while in China 42.3 million and US 30.3 million people may be impacted by DM.[6]

Treatment of Diabetes

1) **Oral hypoglycemic drugs**[12]

- Sulfonylurea: Tolbutamide, Glipizide
- Biguanides: Metformin
- Meglitinides: Repaglinide
- Thiazolidinedione: Rosiglitazone
- α glycosidase inhibitor: Acarbose, Voglibose

<table>
<thead>
<tr>
<th>Name of Drug</th>
<th>Mode of Action</th>
<th>Daily Dose</th>
<th>Route of Administration</th>
<th>Contraindication</th>
<th>Side effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>activation of AMPK in hepatocytes</td>
<td>0.5-2.5g</td>
<td>oral</td>
<td>factors that predispose to lactic acidosis</td>
<td>Nausea, abdominal discomfort and diarrhea</td>
</tr>
<tr>
<td>Sulphonylurea</td>
<td>Stimulation of pancreatic β-cells</td>
<td>1mg-0.5g</td>
<td>Oral</td>
<td>liver disease</td>
<td>Hyperglycemia, Weight gain</td>
</tr>
<tr>
<td>Meglitinides</td>
<td>Stimulation of pancreatic β-cells</td>
<td>1.5-480mg</td>
<td>Oral</td>
<td>chronic kidney disease</td>
<td>Hyperglycemia, Weight gain</td>
</tr>
<tr>
<td>Voglibose</td>
<td>they produce a reversible inhibition of membrane-bound intestinal alpha-glycosidase hydrolase enzymes</td>
<td>50-100mg</td>
<td>oral</td>
<td>chronic intestinal disorders</td>
<td>flatulence, diarrhea and abdominal pain</td>
</tr>
</tbody>
</table>
2) Injectable agents

Table 2: Injectable Drugs.

<table>
<thead>
<tr>
<th>Name of drug</th>
<th>Mode of Action</th>
<th>Daily Dose</th>
<th>Route of Administration</th>
<th>Contraindication</th>
<th>Side effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liraglutide</td>
<td>Increase insulin secretion, Decrease in food intake and inhibition of post-prandial glucagon secretion</td>
<td>0.6-1.8mg daily</td>
<td>Subcutaneous</td>
<td>Thyroid cancer and Multiple endocrine neoplasia</td>
<td>Nausea, vomiting, diarrhea, pancreatitis, hypoglycemia</td>
</tr>
<tr>
<td>Insulin</td>
<td>Insulin stimulates glucose transport across cell membrane by ATP dependent translocation of glucose</td>
<td>0.2-1.6 U/Kg/day</td>
<td>Subcutaneous</td>
<td>Salbutamol; Oral Contraceptives, etc.</td>
<td>Hypoglycemia, Edema, Allergy</td>
</tr>
<tr>
<td>Dulaglutide</td>
<td>It reduces rate of absorption and reduced renal clearance rate.</td>
<td>0.75-1.5 mg/week</td>
<td>Subcutaneous</td>
<td>Pancreatitis and are not approved for use in T1DM</td>
<td>Nausea, vomiting and diarrhea</td>
</tr>
</tbody>
</table>

3) Metabolic surgery [10]

When Lifestyle management and medications do not achieve desired treatment goals bariatric surgery has emerged as the most effective treatment for attending significant and durable results.

Mechanism of action

The exact mechanism of effect of metabolic surgery on diabetes is not fully understood but many factors appear to play a role like change in bile acid metabolism, GI tract nutrition sensing, glucose utilization, insulin resistance and intestinal microbiota. This all factors lead to reduce hepatic glucose production increased tissue glucose uptake improve insulin sensitivity and enhance beta cell function.[9]

Side effects

Myocardial infarction pulmonary embolism intestinal leakage bowel obstruction nutritional deficiency and rarely kidney stones alcohol abuse depression and suicide.[9]

Novel Technologies

Painless smart patch: The North Carolina state university have designed an insulin delivery device based on micro needle array patches. It is integrated with hypoxia sensitive hyaluronic acid (HSHA) vesicles containing insulin and glucose oxidase (GOx). It contains live beta cells and delivers insulin when the level of glucose in blood increases. There are glucose responsive vesicles (GRVs) which are formed by the combination of HSA-2-aminoimidazoles, this complex forms the glucose responsive vesicles. Insulin and glucose oxidase is entrapped into the vesicles. Under hyperglycemic conditions, glucose undergoes oxidation catalyzed by GOx and this forms an microenvironment of hypoxia which leads to dissociation of the vesicles and release of insulin.[8]

Advantage

1. Fast responsiveness and close similarity of pharmacokinetic parameters to pancreas
2. Ease of administration
3. Biocompatibility

![Fig 1: Schematic of the glucose-responsive insulin delivery system using hypoxia-sensitive vesicle-loading MN-array patches](image)
Clicksoft microinjection device: It is a spring loaded micro needle intradermal injection system. Patient does not experience pain while administering insulin from this device. The patient, the micro needles project out of the device and pierces into the skin and the drug is passed into an ultrafine needle in a fine stream of liquid medication from the drug chamber into the layers of the skin.[10]

Advantages
1. It has the proficiency to deliver 100 plus units of insulin in a single dose.
2. It has a faster onset of action when compared to any of the rapid acting insulin presently available in the market.
3. No refrigeration is required as it is using stabilized insulin.
4. Cost effective.

Fig 2: Photograph of the smart insulin patch with an MN array

Fig 3: Clicksoft Microinjection device with drug chamber[10]
Insulin pen: In this system, there is a pen which contains a cartridge of insulin and it can be used multiple times a day by a single patient using a disposable syringe every time. This device reduces the risk of contamination between the patients. There are basically two types of pens that is, Prefilled pen and Reusable pen. Prefilled pens are "use and throw pen". Reusable pens are those which have replaceable cartridges and once the insulin ends up the patient can insert a new cartridge. This system is economical but there are chances of loss of sterility. Needle is screwed into the pen, then the dose is dialed, then injection is inserted subcutaneously and after pressing the plunger the injection is kept inside for 5 sec. Generally, the capacity of these pens is 1.5 ml or 3 ml cartridge should be refrigerated and after it is inserted into the pen temperature should be maintained.

Fig 4: Insulin pen

V-go: It is a FDA approved device which delivers insulin every hour for an interval of 24 hours. This system uses the patch technology and is non-electric and works without batteries or tubing. Vgo uses rapid acting analog insulin. It is waterproof. Every 24 hours a new insulin cartridge has to be placed inside the device.

Advantages
1. Needle phobia is eliminated.
2. Reduces multiple dose injections.
3. It can be taken outdoors.
4. Adheres to the skin with colostomy adhesive.
5. Auto inserts 30 gauze needle that results to minimized pain.

Fig 5: V-Go device

Afrezza Insulin Inhaler: Inhalation is appropriate route for the delivery of insulin because alveoli provides large surface area for rapid absorption of the drug into the blood stream. Afrezza is a product used for this purpose. It increases the absorption of glucose by the skeletal muscle and lessens the production of hepatic glucose. It is available with 4 and 8 unit cartridges which is tailored in the inhaler. The content of the cartridge comprises of dry powder of insulin which becomes aerosolized when the patient breathes through the inhaler.
Alginate encapsulated pancreatic islets: Encapsulation of pancreatic islets offers an alternative to immunosuppression and the capsule acts as a semipermeable membrane that hinders the immune attack of the transplanted cells. Capsules are advantageous over large devices in that they provide rapid diffusion of nutrients as well as oxygen and diffusion of insulin out to the surrounding environment. Capsules reduce the risk of graft failure due to distribution of cell in numerous devices. The capsules are normally injected into the peritoneal cavity where the cells gain access to nutrients and oxygen from the surrounding fluid.[16]

![Image of Afrezza Pump](image_url)

Fig 6: Afrezza Pump.[8]

![Image of Immune Isolation by Encapsulation](image_url)

Fig 7: Immune isolation by encapsulation. Demonstration of cells in capsule where nutrients and oxygen can diffuse into the capsule. [16]

Diagnostic test for Diabetes [14]

<table>
<thead>
<tr>
<th>Test</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting Plasma Glucose (FPG)</td>
<td>≥126mg/dl</td>
</tr>
<tr>
<td>2-hr plasma glucose (oral glucose tolerance test with loading dose of 75g)</td>
<td>≥200mg/dl</td>
</tr>
<tr>
<td>Casual Plasma Glucose (RPG)</td>
<td>≥200mg/dl</td>
</tr>
<tr>
<td>Glycated Hemoglobin (A1C)</td>
<td>≥6.5%</td>
</tr>
</tbody>
</table>

Table 3: Diagnostic test for diabetes
Recent patented drugs for the treatment of diabetes [15]

<table>
<thead>
<tr>
<th>Generic/Code Name</th>
<th>Manufacturer</th>
<th>Indication</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP-4 Inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutogliptin</td>
<td>Phenomix/Forest Laboratories</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Linagliptin</td>
<td>Boehringer Ingelheim</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Melogliptin</td>
<td>Glenmark Pharmaceuticals</td>
<td>Type 2 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>GLP-1 Analogs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albiglutide</td>
<td>GSK</td>
<td>Type 2 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>Exenatide LAR</td>
<td>Amylin/Alkermes/Lilly</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Taspoglutide</td>
<td>Roche/lpisen</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Biguanides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metformin gum/buccal</td>
<td>Generex/Fertin Pharma</td>
<td>Type 2 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>GLP-1 Analogs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiazolidinedione/PPAR-γ Agonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balaglitazone</td>
<td>Dr. Reddy's Laboratories</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Mitoglitazone</td>
<td>Metabolic Solutions Development</td>
<td>Type 2 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>Netoglitazone</td>
<td>Mitsubishi Tanabe</td>
<td>Type 2 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>Rivoglitazone</td>
<td>Daiichi-Sankyo</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Thiazolidinedione/PPAR-γ Agonists</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective Sodium Glucose CoTransporter Inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dapagliflozin</td>
<td>AstraZeneca</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Remogliflozin</td>
<td>GSK/Kissei</td>
<td>Type 2 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>Glinides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitiglinide</td>
<td>Elixir Pharmaceuticals</td>
<td>Type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Insulin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhaled Technosphere insulin</td>
<td>Mankind</td>
<td>Type 1 and type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Insulin intranasal</td>
<td>Bentley</td>
<td>Type 1 and type 2 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>Oral HDV insulin</td>
<td>Diasome</td>
<td>Type 1 and type 2 diabetes</td>
<td>2</td>
</tr>
<tr>
<td>Oral insulin spray</td>
<td>Generex</td>
<td>Type 1 and type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Rapid-acting insulin for injection</td>
<td>Biodel</td>
<td>Type 1 and type 2 diabetes</td>
<td>3</td>
</tr>
<tr>
<td>Recombinant human hyaluroindase for injection</td>
<td>Halozyme therapeutics</td>
<td>Type 1 diabetes</td>
<td>2</td>
</tr>
</tbody>
</table>

Future Prospects for Diabetes monitoring device

Sweat

Sweat can be easily accessed and its production can be stimulated on demand by Iontophoresis. Placing a sensor in close contact with skin sweat samples can be examined without contamination. A healthy person’s glucose level were reported between 0.06 and 0.11mM while in case of diabetics it was 0.01 and 1mM. [17]

Wang ET Al have created a device that can be easily integrated into individual’s lifestyle this device contains lactate biosensor connected on to the one of the nose Bridge pad. The device can be coupled by Bluetooth data to remove mobile host device for data analysis and visualization. [18]

![Fig 8: eyeglasses biosensor system](image_url)
Breath

Breath analysis is one of means for tracking the health status of an individual. Metabolism produces volatile organic compounds as a by-product they circulate around the body and pass over the alveolar interface and exhaled in the breath. Nano materials can be incorporated for sensing Acetone concentration in breath as an alternative to glucose monitoring for diabetes. The sensing units must have a high sensitivity to detect volatile organic compounds in Nano molar to Pico molar concentration range. [19]

Jiang and co-workers have reported a breath Acetone analyses which can detect Acetone levels in diabetic patient but the device requires the control external And Atmosphere in order to diagnosis diabetes accurately. [20]

Saliva

Saliva is a complex fruit containing many analytes that permeate from Blood there by providing a useful insight into a person's emotional, hormonal, metabolic and nutritional state. Saliva offers many advantages for diagnosis and everyday dental platforms like mouth guards’ dentures as well as novel devices like dental tattoos which can be used for non-invasive detection of glucose in saliva. [21]

Fig 9: - Lactate sensing mouth guard[22]

Conclusion

Wearable sensors have the potential to play a major role in the continuous and non-invasive Monitoring of biomarkers for diabetes. An important enabling step will be to create a clear understanding of the relations between the diagnostically relevant concentrations of diseases markers in blood compared to other physiological fluids. Existing wearable devices such as fitness bands and smart watches, already dominate the market and provide an information base that can be expanded to disease monitoring or diagnosis. However, these wearable technologies can provide additional insights into the wearer’s health and integrated in to clinical practices and promote actionable and behavioral change.

References

8. Priya Raina, et al; “Novel Technologies Mark the Future of Insulin”; American journal of Pharmtech research; 2017; 7(1); page no 100-120.
9. Philip r. Schauer, md, et al; “metabolic surgery for treating type 2 diabetes mellitus: now supported by the world's leading diabetes organizations”; Cleveland clinic journal of medicine volume 84 • supplement 1 July 2017 page no s47-s56
14. Habtamu Wondifraw Baynest; "Classification, pathophysiology, Diagnosis and management of diabetes mellitus"; journal of diabetes and metabolism; 2015; volume6; issue5; April30, 2015.
15. Terri L. levien and E. Baker; " New drugs in development for the treatment of Diabetes"; Diabetes Spectrum; volume 22, number 2; 2009; Page no.92-105