Therapeutic Potential of Widely Used Unani Drug *Asl-US-Soos (Glycyrrhiza glabra Linn.): A Systematic Review*  

*Ishtiyaq Ahmad* 1, Alam Abrar 1, Siddiqui Javed Inam 2, Kazmi Munawwar Husain 3  

1 P.G Scholar, Ilmul Advia (Unani Pharmacology), Central Research Institute of Unani Medicine, Hyderabad, India  

2 Lecturer, Ilmul Advia (Unani Pharmacology), Central Research Institute of Unani Medicine, Hyderabad, India  

3 Professor & HoD, Ilmul Advia (Unani Pharmacology), Central Research Institute of Unani Medicine, Hyderabad, India  

**ABSTRACT**  
Plants have been one of the important sources of therapeutics or other human health benefits since the beginning of human civilization throughout history. Currently, there is increasing awareness and general acceptability of the use of herbs, as a medicines, health products, pharmaceuticals, food supplements, cosmetics etc. Traditional system of medicine including Ayurveda, Unani, and Siddha etc. contributed in Health care dealing worldwide. The Unani system of medicine (USM) is an age old system of medicine which has a holistic approach to treat various kind of disease; most of the time the drugs mentioned in this system has tremendous effects in chronic disease.

*Asl-US-Soos (Glycyrrhiza glabra Linn.)*, is a widely used herb in USM. Although the review articles on this plant are already published, this review article is presented to compile all the updated information on its therapeutic potency based on phytoconstituents and pharmacological activities and the potency which is described by renowned Unani physicians and scholars. The evidence based studies provides strengthen to the concept of Unani physicians as the Unani physician used and recommended the drug since along. Moreover the evidence based studies indicate that Glycyrrhiza glabra Linn possesses antibacterial, antioxidant, antiinflammatory and anti-hyper glycemic properties. Various other effects like antiallergic, antiviral, antihepatotoxic, antifungal and herpes simplex have also been studied. These results are very encouraging and indicate that this Unani drug can be studied more extensively with a well-planned and systematic scientific preclinical and clinical approach to explore the promising outcome. Further this review gives an account of the current knowledge on the morphological characters, microscopic characters, phytochemistry, and pharmacological actions present in root of *Glycyrrhiza glabra* along with its actions and therapeutic potential in the perspective of USM.

**Keywords:** *Glycyrrhiza glabra*, therapeutic potential, USM  

**Article Info:** Received 21 June 2019; Review Completed 04 August 2019; Accepted 19 August 2019; Available online 25 August 2019  

**Cite this article as:** Ishtiyaq A, Alam A, Siddiqui H, Kazmi MH, Therapeutic Potential of Widely Used Unani Drug *Asl-US-Soos (Glycyrrhiza glabra Linn.)*: A Systematic Review. Journal of Drug Delivery and Therapeutics. 2019;9(4-s):765-773  

http://dx.doi.org/10.22270/jddt.v9i4-s.3318  

**Address for Correspondence:**  
Ishtiyaq Ahmad, Dept. of Ilmul Advia, Central Research Institute of Unani Medicine, AG Colony Road, Erragadda, Hyderabad, TS, 500038

**Introduction**  
Traditional system of medicine including Ayurveda, Unani, and Siddha etc. contributed in Health care dealing worldwide. The Unani system of medicine is an age old system of medicine which has a holistic approach to treat various kind of disease; most of the time the drugs mentioned in this system has tremendous effects in chronic disease. In Unani medicine there are three sources of drugs e.g. plant, mineral, and animal. Majority of drugs obtained from plants and their products. These crude drugs have different medicinal values.

*Glycyrrhiza glabra* Linn. is a perennial plant of the family *Fabaceae* and is well known as *Asl-US-Soos* (licorice) in Unani system of medicine. *G. glabra* is an oldest medicinal plant and used in various traditional system of medicine for its medicinal values, it is widely distributed in subtropical and warm regions.

*Asl-US-Soos* is a type of hardy herb or undershrub. The drug is widely known as licorice or licorice roots. The licorice roots are thick, having many branches with red or lemon colour in outside, and yellowish or pale yellow in inside, wrinkled fibrous wood, which has sweet taste due to glycyrrhizin, which is 50 time sweet than sugar.  

On large scale the *Asl-US-Soos* is found in spin, England, Sicily, Iran, Iraq, and Russia etc., in India it is cultivated in Punjab, Jammu and Kashmir and Andaman Island etc.
In Unani system of medicine the Asl-us-soos has been frequently used from centuries in the treatment of Šu‘īl (cough), Diq al-Nafs (bronchial asthma), Huruqa al-Baw (Burning micturition), sozak (gonorrhea) Qurūh al-Mathāna, Jara al-Mathāna, Buḥṣa al-Sawt (hoarseness), Qurūh-i-Huzamī (peptic ulcer), Nār āfṣīr (eczema) etc. 3-4

Even today Asl-us-Soos is widely used for antimicrobial, antioxidant, anticoagulative, antiallergic, expectorant, antiulcer, anxiolytic properties and for various pharma logical actions. 5

**Botanical descriptions**

Asl-us-Soos consist of the dried root of Glycyrrhiza glabra Linn. family fabaceae.

Achieved a height of 1.8 meter. Leaves imparipinnate; leaflets in 4-7 pair, ovate-lanceolate, smooth. Flowers born in axillary spikes, papilionaceous, lavender to violet in colour. Pads compresses. Seed 2-3, flat deep grey. The plant is cultivated by planting rhizome or stolon cutting in well moist sandy soil in march. 1,6

**Vernacular name** 3,4,6,8,9

<table>
<thead>
<tr>
<th>Hindi</th>
<th>Mulethi, Mulathi, Mulhatti, Jathimadhu</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Liquorice, licorice</td>
</tr>
<tr>
<td>Unani</td>
<td>Asl-us-soos, Mulethi</td>
</tr>
<tr>
<td>Arabic</td>
<td>Asl-us-soos</td>
</tr>
<tr>
<td>Persian</td>
<td>Beekh-e-Mahak</td>
</tr>
<tr>
<td>Ayurvedic</td>
<td>Yashtimadhu, Madhuli, Madhuka, Yashti, Yastikaahva</td>
</tr>
<tr>
<td>Malayalam</td>
<td>Irati-madhuran</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>Madhuyashti</td>
</tr>
<tr>
<td>Assam</td>
<td>Jastimadhu</td>
</tr>
<tr>
<td>Bengal</td>
<td>Jastimadhu</td>
</tr>
<tr>
<td>Gujarat</td>
<td>Jastimadhu</td>
</tr>
<tr>
<td>Orissa</td>
<td>Jatimadhu, Jastimadhu</td>
</tr>
<tr>
<td>Tamil</td>
<td>Atimadhumaram,</td>
</tr>
<tr>
<td>Telgu</td>
<td>Atimadhumaram</td>
</tr>
</tbody>
</table>

**Organoleptic Characters of Root of Asl-us-Soos** 11

<table>
<thead>
<tr>
<th>Colour</th>
<th>Red or lemon colour in outside, yellowish or pale yellow in inside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odour</td>
<td>Faint and characteristic</td>
</tr>
<tr>
<td>Taste</td>
<td>Sweet</td>
</tr>
<tr>
<td>Size</td>
<td>Length 20-50 cm, diameter 2 cm</td>
</tr>
<tr>
<td>Shape</td>
<td>Cylindrical pieces</td>
</tr>
<tr>
<td>Fracture</td>
<td>It is fibrous in the bark and splinter in wood</td>
</tr>
</tbody>
</table>

**Microscopic Characters of Root of Asl-Us-Soos**

Histological diagnostic characters of Asl-us-Soos are unpeeled drugs the presence of polyhedral tubular brownish cork cells. Fibers are thick, lignified or partially lignified, in the group of 10-15 in phloem and xylem. Vessels are large and closely arranged with bordered pits. Starch and calcium oxalate crystals are present in parenchyma. In the stolon, the pith is present and is parenchymatous, and in case of roots the presence of tetrac xylem and absent of pith. 11

**Chemical constituents**

The Asl-us-Soos (licorice root) is contains various types of chemical constituent mainly Flavonoids, sugar, amino acid, starch, resins, sterols and essential oil.

Asl-us-Soos is mainly composed of triterpenes saponin 4-20% included; glycyrrhizin or glycyrrhizic acid and licorice root also contained other triterpenes like liquiritic acid, glycyrrhetol, glabrolide, isoglaborlide and liquirid acid.

Flavonoids and chalcones isolated from Asl-us-Soos are liquiritin, liquiritigenin, hamnoliquiritin, neoliquiritin, chelcones soliquiritin, isoliquiritigenin, neoisolkirin, licursaid, glabrolide, licoflavonol, 5,8-dihydroxy-flavone-7-O-beeta-D-glucuronide etc.

Other constituents of Asl-us-Soos (licorice root) are glucose upto 4%, sucrose 2.5-6.5%, resins, essential oil, sterols, amino acid, starches, pectin, mucilage, lipid, and tenninetc. 6,8,9,11,12,13

The Asl-us-Soos (licorice root) also contain few heavy metal like; Cd (Cadmium), Pb (lead), Ar (Arsenic), Hg (Mercury) and the trace elements are also present in the root powder of licorice were; Potassium:0.66%, Calcium:1.87% Sulphur: 0.06%, Iron:0.14%, Aluminium: 0.05%, Phosphorous: 0.06%, Silicon: 0.12%, Magnesium: 0.17%, Sodium: 0.04%. 14
Table 1: List of Few Chemical Constituents Responsible for the Bioactivity71

<table>
<thead>
<tr>
<th>S.no</th>
<th>Name of Chemical Constituent</th>
<th>Class of Chemical Constituent</th>
<th>Biological Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Glabridin, glabrene, glycyrrhizinic acid</td>
<td>Flavonoid, isoflavon, saponin glycoside</td>
<td>Antilulcer activity</td>
</tr>
<tr>
<td>2.</td>
<td>Glabridin</td>
<td>Flavonoid</td>
<td>Antimycobacterial activity</td>
</tr>
<tr>
<td>3.</td>
<td>Isoliquiritigenin</td>
<td>Flavonoid</td>
<td>Analgesic &amp; uterine Relaxant activity</td>
</tr>
<tr>
<td>4.</td>
<td>Licochalcone, glabridin, isoliquiritigenin, licocoumarin</td>
<td>Chalcone, flavonoid</td>
<td>Antioxidant activity</td>
</tr>
<tr>
<td>5.</td>
<td>Glabridin</td>
<td>Flavonoid</td>
<td>Memory enhancer activity</td>
</tr>
<tr>
<td>6.</td>
<td>18-β-glycyrrhetinic acid</td>
<td>Triterpenoid saponin glycoside</td>
<td>Corticosteroid like activity</td>
</tr>
<tr>
<td>7.</td>
<td>Glycyrrhizin, 18-β-glycyrrhetinic acid, liquiritigenin</td>
<td>Triterpenoid saponin glycoside, flavonone</td>
<td>Anti allergic activity</td>
</tr>
<tr>
<td>8.</td>
<td>Glycyrrhizin</td>
<td>Triterpenoid saponin glycoside</td>
<td>Hepatoprotective activity</td>
</tr>
<tr>
<td>9.</td>
<td>Glycyrrhetinic acid, liquitoside, Licochalcone A</td>
<td>Chalcone</td>
<td>Anti-inflammatory activity</td>
</tr>
<tr>
<td>10.</td>
<td>Glycyrrhetic acid, Glycyrrhizin</td>
<td>Triterpenoid saponin glycoside</td>
<td>Anticancer activity</td>
</tr>
<tr>
<td>11.</td>
<td>Licochalcone A</td>
<td>Chalcone</td>
<td>Antimarial activity</td>
</tr>
<tr>
<td>12.</td>
<td>Glycyrrhizin, licochalcones, glycyrrhetic acid</td>
<td>Triterpenoid saponin glycoside</td>
<td>Antiviral activity</td>
</tr>
<tr>
<td>13.</td>
<td>18-β-glycyrrhetinic acid, glycyrrhizin</td>
<td>Triterpenoid saponin glycoside</td>
<td>Antihyperglycemic activity</td>
</tr>
<tr>
<td>14.</td>
<td>Glycyrrhizin</td>
<td>Triterpenoid saponin glycoside</td>
<td>Anticancer activity hepatocellular carcinoma</td>
</tr>
<tr>
<td>15.</td>
<td>Glycyrrhizin</td>
<td>Triterpenoid saponin glycoside</td>
<td>Antitussive activity</td>
</tr>
<tr>
<td>16.</td>
<td>Glycyrrhizin, isoliquiritigenin</td>
<td>Triterpenoid saponin glycoside, flavonoid</td>
<td>Antithrombin activity</td>
</tr>
<tr>
<td>17.</td>
<td>Glycyrrhetinic acid</td>
<td>Triterpenoid</td>
<td>Immunostimulating activity</td>
</tr>
<tr>
<td>18.</td>
<td>Glycyrrhizin</td>
<td>Triterpenoid saponin glycoside</td>
<td>Anti HIV</td>
</tr>
<tr>
<td>19.</td>
<td>Glycyrrhizin</td>
<td>Triterpenoid saponin glycoside</td>
<td>Hepato protective activity in Chronic hepatitis C</td>
</tr>
<tr>
<td>20.</td>
<td>Liquiritin</td>
<td>Flavonoid</td>
<td>Spasmolytic activity</td>
</tr>
<tr>
<td>21.</td>
<td>Rhamnoglucoside</td>
<td>Flavonone</td>
<td>Muscle relaxant</td>
</tr>
<tr>
<td>22.</td>
<td>Glabrene, liquiritigenin</td>
<td>Isoflavon, flavonone</td>
<td>Estrogenic activity</td>
</tr>
</tbody>
</table>

**Mizāj (temperament)** 3,10,15,16,17

**Hār (Hot) 2°, Yābis (Dry) 1°**

**Muḍīr(Contraindication):** for kidney, and spleen 4,17,18

**Muṣliḥ (Correctives):** 4,17,18

*Kateera* is recommended in kidney diseases

*Gul-i-Surkh* is recommended in spleen diseases

**Badal (substitute):** *Kateera* is recommended in chest pain 4,17,18

**Doses:** 3-7 gm 4,8,9,17,18,19

**Doses forms:** The drug can be used alone in Safūf (powder) form, Joshanda (decoction), or may be used along with other ingredients. 3,15,17

**Afāl (Action):**


**Ist’emāl (Therapeutic uses)**


In traditional system of medicine *Asl-us-Suos* is recommended for the treatment of epilepsy. It is used in sex hormone imbalance condition, and also used in early menopausal condition in women. *Asl-us-Suos* content flavonoids-Iso liquoritin with anti gastric effect so used in peptic ulcer in form of deglycyrrhized liquorice, in the presence of glycyrrhizinetin it is employed in place of corticosteroids for the treatment of rheumatoid arthritis, inflammation and addision's disease, glycyrrhizinic acid is also used for the common cold, viral hepatitis, viral infaction, externally it is applied with honey for treatment of *Bayd al-Hānd* (eczema) and *Amr al-Nār* (Herpes), *nār farsi* (eczema) and *Dāssaf* (psoriasis). *Asl-us-Suos* in bulk amount increase fluid and sodium retention and promoted potassium depletion, therefore it should be used carefully in patient with cardiac problem and hypotension etc. 1,3,4,6,7,8,9,10,12,15,16,17,18,19

**Conclusion:**

Glycyrrhizin is an important component of *Asl-us-Suos* in Unani system of medicine. It has anti fungal activity against *Mycobacteria tuberculosis* in vitro. Glycyrrhetic acid, liquiritoside, β glycyrrhetinic acid, glycyrrhizinic acid, liquiritigenin, flavonoids and flavanones are the important compounds that contributed to the therapeutic uses of *Asl-us-Suos*. It is known to possess hepatoprotective, anti-inflammatory, anti-allergic and anti-microbial activities. Glycyrrhizin is recommend for the treatment of epilepsy. It is used in the traditional system of medicine. In Unani system of medicine, it is used for the treatment of peptic ulcer, arthritis, liver diseases, cough, bronchial asthma, burning micturition, gonorrhea, hoarseness, cardioopeacity etc. In general, it is considered safe for use. However, it is recommended to be used under medical supervision due to its potential side effects.
Ishitiyaq et al. The effect of \textit{Glycyrrhiza glabra} root on learning and memory in a dose dependent manner. 20, 21

In a clinical study, the \textit{Glycyrrhiza glabra} decreased irritations in the throat and produced expectorant effects. It was assumed that \textit{Glycyrrhiza} was able to stimulate tracheal mucus secretion and produce demulcent and expectorant effects. 26, 27, 28

**Antidepressant activity**

In an experiment, the aqueous extract of root of \textit{Glycyrrhiza glabra} showed anti-depressant effects in mice by using forced swim test (FST) and tail suspension test (TST). The extract of \textit{Glycyrrhiza glabra} (75, 150, and 300 mg/kg) was administered orally for 7 successive days in separate groups of male mice. The dose of 150 mg/kg of the extract significantly reduced the immobility times of mice in both FST and TST, without any significant effect on locomotor activity of mice. The efficacy of extract was found to be comparable to that of imipramine (15 mg/kg ip) and fluoxetine (20 mg/kg ip). Liquorice extract reversed reserpine-induced extension of immobility period of mice in FST and TST. Sulpiride (50 mg/kg ip, a selective D2 receptor antagonist) and prazosin (62.5 µg/kg ip, an a1- adrenoceptor antagonist) significantly attenuated the extract-induced antidepressant-like effect in TST. On the other hand, p-chlorophenylalanine (100 mg/kg, ip, an inhibitor of serotonin synthesis) did not reverse antidepressant-like effect of liquorice extract. It seemed that the antidepressant-like effect of liquorice extract mediated by increase of brain norepinephrine and dopamine, but not by increase of serotonin. 29

**Anti-inflammatory activity**

In an experimental study, the anti-inflammatory activity of hydro alcoholic extract of \textit{Glycyrrhiza glabra} (HAGEG) root was evaluated against carrageenan induced rat paw oedema at dose levels of 100, 200, and 300 mg/kg orally. The hydro alcoholic extract of \textit{Glycyrrhiza glabra} showed a maximum (46.86%) inhibitory action on carrageenan induced paw oedema at the dose of 200 mg/kg and inhibited the leukocyte migration in a dose dependent manner. 31
In another activity, the anti-inflammatory activity was comparable to indomethacin (10mg/kg). Several secondary metabolites isolated from rhizomes of Glycyrhiza glabra were investigated for the COX-2 inhibitory activity using Cayman COX (ovine) inhibitory screening assay. A few molecules showed potent COX-2 inhibitory activity which may beneficial as anti-inflammatory agents. Glycyrrhizin exhibited steroid-like anti-inflammatory activity, similar to hydrocortisone due to inhibition of phospholipase A2 activity, glycyrrhizic acid inhibited cyclooxygenase activity and prostaglandin formation (specifically prostaglandin E2), as well as indirectly inhibiting platelet aggregation.

**Antimicrobial activity**

The antibacterial effect of alcoholic extract obtained by percolation from roots of Glycyrhiza glabra was tested against *Escherichia coli*, *Pseudomonas fluorescens*, *Enterococcus faecalis*, *Bacillus cereus*, and *Staphylococcus aureus*, the extract showed the strong antibacterial activity against all bacterial strains tested. The maximum inhibition diameter was 15 mm against *E. coli*, *E. faecalis*, *B. cereus*, whereas *P. fluorescens* showed the lowest sensitivity, with an inhibition zone of 9 mm.

The antimicrobial effect of the methanolic extract of Glycyrrhiza glabra was investigated against *B. megaterium*, *B. subtilis*, *Staphylococcus aureus*, *Sarcina lutea*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Salmonella paratyphi*, *S. typhi*, *Shigella boydii*, *S. dysenteriae*, *Vibrio parahemolyticus*. The Glycyrrhiza glabra methanolic extract showed potent antimicrobial activity against almost all the tested organisms except *Pseudomonas aeruginosa*, it exhibited highest activity against *Staphylococcus aureus* with a zone of inhibition of 22 mm.

The ethanolic extract of Glycyrrhiza glabra root was shown to have antimicrobial activity at 500 g/mL against *Mycobacterium tuberculosis* H37Ra and H37Rv strains through BACTEC assay. The MIC of test compounds was noted on the basis of GI (growth index) value. Further, the ethyl acetate fraction showed better activity at a concentration range of 100–250 g/mL. The column fraction eluted with chloroform: ethyl acetate (1:1) was found to be still more active against tubercular bacilli at 50–120 µg/mL. The antitubercular activity of glabridin was found to be at 29.16 µg/mL against *B. subtilis*, *Staphylococcus aureus*, *Sarcina lutea*, *Escherichia coli*, *Shigella boydii*, *S. dysenteriae*, *Vibrio parahemolyticus*, *Vibrio vulnificus*. The *Glycyrrhiza glabra* methanolic extract showed strong antimicrobial activity against almost all the pathogenic fungi,

The antibacterial activity of methanolic extract and different fractions (n-butanol, ethyl acetate, chloroform and n-hexane) of Glycyrrhiza glabra root was studied against four bacterial strains *Escherichia coli*, *Bacillus subtilis*, *Staphylococcus aureus* and *Pasturella multocida* and three pathogenic fungi, *Aspergillus niger*, *Aspergillus flavus* and *Rhizopus solani* using disc diffusion and minimum inhibitory concentration methods. As general, plant extract and fractions were mildly potent antimicrobial agent. The results indicated that 100% methanolic extract showed good activity against *E. coli* and *B. subtilis*, showing the highest inhibition zones (33 and 27.5 mm) and the lowest MIC values (9.28 and 30.2 mg/mL, respectively). Least activity was exhibited against *A. niger* and *R. solani* with the smallest inhibition zones (16.5 and 16 mm) and the highest MIC values (150 and 152 mg/mL). 80% methanolic extract showed strong activity against *B. subtilis* and *E. coli* with inhibition zones (30 and 28.5 mm) and the lowest MIC values (12.2 and 20.1 mg/mL, respectively). Least activity was exhibited against *S. aureus* with inhibition zone (19 mm) and the highest MIC value (110 mg/mL, respectively).

80% methanolic fraction showed magnificent activity against *A. niger* as compared to standard drug fluconazole.

There are many studies have demonstrated that glycyrrhizin of licorice was responsible for the antiviral activity. The possible antiviral mechanisms of these compounds were (HCV): affected release step while infectious HCV particles are infecting cells. Inhibited HCV full length viral particles and HCV core gene expression. (HSV): reduced adhesion force and stress between CEC and PMN. (CVB3): blocked the degradation of nuclear factor kβ inhibitor Ikβ. (DVH): activated T lymphocyte proliferation. (H5N1): weakened H5N1-induced production of CXCL10, IL-6 and CCL5, and suppressed H5N1-induced apoptosis. (Influenza virus): reduced HMG 1 binding to DNA, and inhibited influenza virus polymerase activity. (CVA16 EV71): inactivated CVA16 directly, while the effect of anti-EV71 was associated with an event during the virus cell entry. (HSV1): established a resistance state to HSV1 replication. (Rotavirus): reduced the levels of viral proteins VP2, VP6 and NSP2 at a step or steps subsequent to virus entry.

**Anticancer activity**

The antitumor activity of methanolic extract of licorice (0, 12.5, 25, 50 and 100 µg/mL) was evaluated against intestinal carcinoma cell line (Caco-2) and prostate carcinoma cell line (PC-3). Licorice methanolic extract had a growth inhibitory action against Caco-2 and PC-3 with IC50 values of 40 and 40.6 µg/mL, respectively.

In an experimental study, the methanolic extract of *Glycyrrhiza glabra* showed anticancer activity by using brine shrimp lethality bioassay methods. The extract possessed potent cytotoxic activity with LC50 value of 0.77 µg/mL. Isoliquiritigenin (ISL) is one of the natural bioactive ingredient isolated from the root of *Glycyrrhiza glabra* prevented the incidence of 1.2-dimethylhydrazine-induced colon and lung tumors in mice when administered at a dose of 300 mg/kg.

In another study, Isoliquiritigenin was considered to be non-hormonal alternatives in botanical supplements. Exposure of ISL to HeLa cells-induced apoptosis. The oxidative stresses, mitochondrion-dependent and the estrogen receptor stress-triggered signaling pathways, were considered to be the reasons of apoptosis in HeLa cells (Yuan et al., 2013b). Isoliquiritigenin treatment inhibited cell proliferation of HeLa cells with increased apoptotic rate and cancer U14 cells.

The cytotoxic activity of different extracts of *Glycyrrhiza glabra* was tested on mice transformed cell line. The results showed that hot alcoholic extract possessed the greatest cytotoxic effect on the cancer cells (P<0.05) after 72 hours exposure.

The antiangiogenic and antitumor activity of *Glycyrrhiza glabra* were investigated on VEGF and MTA1 induced angiogenesis. The angi inhibitory activity of *Glycyrrhiza glabra* was confirmed by its inhibition of angiogenesis, peritoneal and chorioallantoic membrane assay. Reduction in the levels of them cytokine VEGF and microvessel density count in the peritoneum of mice treated with *Glycyrrhiza glabra* indicated that the plant extract decreased VEGF production. It also inhibited the neovascularization in CAM induced by VEGF and MTA1.

**Effect in Gastro-Duodenal Ulcers**

In an experimental study, Carbenoxolone a glycyrrhizin acid derivative with a steroid like structure, found in root of liquorice plant, was effective in the treatment of gastric and
duodenal ulcer at the medium dose of 100 mg three times a day. Liquoric can raise the concentration of prostaglandins in the digestive system that promote mucus secretion from the stomach, it was also prolonged the life span of surface cells in the stomach and has an anti-pepsi effects.54,55,56,57

In a clinical study, 40 patients treated either 3.0 or 4.5 g deglycyrrhizinated licorice (DGL) daily for eight weeks, were assessed for relief from epigastric pain, nausea, vomiting, x-ray of ulcer craters to determine changes in size of ulcer, and frequency of relapse. All patients showed significant improvement after 5-7 days.46

In another clinical study, more larger trial carried out on 874 patients with chronic duodenal ulcers. Patients were received DGL (deglycyrrhizinated licorice), cimetidine, or, atacids. No differences were recorded among groups in the rate of ulcer healing, but patients in the DGL group showed less occurrence of relapses.50

The anti- Helicobacter pylori activity of glycyrrhizin acid, glycyrrhetinic acid and a novel lipophilic derivative of glycyrrhetinic acid monoglucuronide acetylated (GAMG) was tested against 29 Helicobacter pylori strains. Glycyrrhetinic acid was the most potent compound (MIC 50 /90, 50/100 mg/l), inhibiting 79.3% of the strains at MIC <50 mg/l.51

Activity on smooth muscles

In an experimental study, the effect of hydro-alcoholic extract of licorice rhizome is studied on mechanical activity of isolated colon in male rats. The mechanical activity of tissue in presence of extract and epinephrine was significantly decreased (p=0.05) compared to the control group. While the mechanical activity in the presence of extract and propranolol was significantly increased (p=0.05) compared to the control group. However, no significant modification was observed in the mechanical activity of the tissue in the presence of phelylephrine and extract compared to the control group. According to the result, it appeared that hydro-alcoholic extract of licorice had modifying effect on colon motility via synergist effect with beta adrenergic receptors and independent of the alpha adrenergic receptors.52,53

Isoliquiritigenin isolated from an aqueous extract of licorice root was a potent relaxant, it inhibited the contraction induced by various types of stimulants, such as CCh, KCl and BaCl2 with IC50 values of 4.96±1.97microM, 4.03±1.34 microM and 3.70±0.58 microM.54,55

In an in vitro study, the mechanisms of action of licorice rhizome extract on duodenal motility were investigated in rats. Mechanical activity in response to extract 43µg/ml (most effective concentration based on concentration/response experiments) in the presence of acetylcholine (10-5 M) as the muscarinic receptor agonist, atropine (10-4 M) as the muscarinic receptor antagonist, epinephrine (10-6 M) as the β-adrenoceptoragonist, propranolol as β receptor antagonist, or N-w- nitro- L-arginine methyl ester (L-NAME) (10-4 M) as the inhibitor of the NO synthase enzyme was measured. The results showed that the contraction force exerted on the isolated duodenum pieces by acetylcholine was remarkably reduced in the presence of licorice rhizome extract compared to that of the control group (P<0.05). However, this response in the presence of atropine,propranolol and (L-NAME) was not changed significantly. According to the results of the study, alcoholic extract of licorice rhizome decreases bowel motility. This inhibitory effect was independent of cholinergic, β-adrenergic and nitrogic pathways.56

Anti-diabetes activity

In this experimental study, the anti-diabetic effects of glycyrrhizin were investigated by using genetically non-insulin dependent diabetic Mellitus (NIDDM) model mice (KK-Ay), through a long-term feeding of glycyrrhizin treatment (2.7, 4.1 g/kg diet) on diabetic symptom. The rise of blood glucose concentration was almost prevent in mice fed the 0.41% glycyrrhizin diet 9 weeks after the beginning of test feeding, although it was not suppressed in mice fed the control diet or the 0.27% glycyrrhizin diet. Water intake in the control and 0.27% glycyrrhizin diet groups increased gradually, whereas, this was not true in the 0.41% glycyrrhizin diet group. Glycyrrhizin treatment significantly lowered blood insulin level. It did not affect the food intake or body weight among the groups. 0.41% glycyrrhizin diet in mice also improved their tolerance to oral glucose loading 9 weeks after the beginning of test feeding.57

In another study, the effect of glycyrrhizin on streptozotocin (STZ)-induced diabetic changes and associated oxidative stress, including haemoglobin-induced free iron-mediated oxidative reactive on Male Wistar rats. Glycyrrhizin treatment improved significantly the diabetogenic effects of STZ, it modulated blood glucose level, glucose intolerant behaviour, decreased serum insulin level including pancreatic islet cell numbers, increased glycohaemoglobin level and enhanced levels of cholesterol and triglyceride. The treatment significantly reduced diabetes-induced abnormalities of pancreas and kidney tissues. Oxidative stress parameters, serum superoxide dismutase, catalase, malondialdehyde and fructosamine in diabetic rats were reverted to respective normal values after glycyrrhizin administration. Free iron in haemoglobin, iron-mediated free radical reactions and carbonyl formation in haemoglobin were pronounced in diabetes, and were counteracted by glycyrrhizin. Effects of glycyrrhizin and glibenclamide treatments appeared comparable.58

Anti-Dyslipidemic activity

In an experiment, the ethanolic (95%) extract of root of Glycyrrhiza glabra and its fractions were showed its antidyslipidaemic activity on high fructose diet (HFD) induced dyslipidaemic Syrian hamsters. Ethanolic extract and its ethyl acetate soluble, water soluble and hexane soluble fractions decreased serum level of total cholesterol by 25.9, 38.0, 39.0 and 26.3%, respectively in high fructose diet induced dyslipidaemic in Syrian golden hamsters. Furthermore, they also increased the serum HDL cholesterol level by 14.8, 34.3, 27.3 and 17.2%, and decreased triglyceride level by 31.3, 37.2, 41.2 and 28.9%, respectively. The reduction in LDL-cholesterol level by ethanolic extract, ethyl acetate soluble fraction and water soluble fraction were 43.9, 31.0, 33.4 and 24.6% respectively.59

Effect on Metabolic Syndroms

Therapeutic potential of Glycyrrhiza glabra root extract incorporated diet at 300 mg/kg/day was evaluated in a rat model with high-fat diet-induced signs of metabolic syndrome. Glycyrrhiza glabra root extract significantly reduced the weight of epidymal tissue (19.0%, p < 0.01) and basal serum glucose level (19.4%, p < 0.05), decreased systolic blood pressure by 12.0% (p < 0.05), reduced serum IL6 and corticosterone levels induced by HFD and reduced tracyglycerol accumulation in the liver.50

Aphrodisiac activity

In the experimental study, the effect of aqueous extract of Glycyrrhiza glabra roots and rhizomes showed aphrodisiac activity in male wistar rats. 150 mg/kg & 300 mg/kg/day

Ishiiya et al. Journal of Drug Delivery & Therapeutics. 2019; 9(4-s):765-773

ISSN: 2250-1177
CODEN (USA): JDDTAO

Anti-Dyslipidemic activity

In an experiment, the ethanolic (95%) extract of root of Glycyrrhiza glabra and its fractions were showed its antidyslipidaemic activity on high fructose diet (HFD) induced dyslipidaemic Syrian hamsters. Ethanolic extract and its ethyl acetate soluble, water soluble and hexane soluble fractions decreased serum level of total cholesterol by 25.9, 38.0, 39.0 and 26.3%, respectively in high fructose diet induced dyslipidaemic in Syrian golden hamsters. Furthermore, they also increased the serum HDL-cholesterol level by 14.8, 34.3, 27.3 and 17.2%, and decreased triglyceride level by 31.3, 37.2, 41.2 and 28.9%, respectively. The reduction in LDL-cholesterol level by ethanolic extract, ethyl acetate soluble fraction and water soluble fraction were 43.9, 31.0, 33.4 and 24.6% respectively.59

Effect on Metabolic Syndroms

Therapeutic potential of Glycyrrhiza glabra root extract incorporated diet at 300 mg/kg/day was evaluated in a rat model with high-fat diet-induced signs of metabolic syndrome. Glycyrrhiza glabra root extract significantly reduced the weight of epidymal tissue (19.0%, p < 0.01) and basal serum glucose level (19.4%, p < 0.05), decreased systolic blood pressure by 12.0% (p < 0.05), reduced serum IL6 and corticosterone levels induced by HFD and reduced tracyglycerol accumulation in the liver.50

Aphrodisiac activity

In the experimental study, the effect of aqueous extract of Glycyrrhiza glabra roots and rhizomes showed aphrodisiac activity in male wistar rats. 150 mg/kg & 300 mg/kg/day
were administered orally by gavage for 28 days. Mount latency, intromission latency, mounting frequency, intromission frequency observed before and during the study at day 0, 7, 10, 14, 21, and 28. The extract reduced significantly mount latency and intromission latency. The extract also increased significantly mounting frequency and intromission frequency.61

Corticosteroid activity

Based on the similarities in the corticosteroid hormones and the glycyrhrizate structure initial theories assumed a direct binding of 18β-glycyrrhetinic acid to the mineralocorticoid and glucocorticoid receptors in various tissues. Licorice showed mineralocorticoid properties due to the presence of glycyrhrizin and its metabolite 18β-glycyrrhetinic acid, which was an inhibitor of cortisol metabolism. It was suggested the mineralocorticoid properties of liquorice, agonist of mineralocorticoid receptors and mild inhibitor of androgen synthesis, can reduce the prevalence of side effects related to the diuretic activity of spironolactone in patients with PCOS (Polycystic Ovarian Syndrome).62,63

Originally the structure and activity of 18β-glycyrrhetinic acid were thought to be similar to adrenal steroid hormones, such as aldosterone and cortisol, since ingestion of liquorice mimicked hyperaldosteronism and was suggested as a treatment for Addison’s disease. It is now thought that the presence of intact adrenals is required for liquorice ingestion to cause sodium retention, leading to subsequent hypertension.64

Estrogenic Activity

Glycyrrhiza glabra (25 mg alcoholic extract) showed high estrogenic activity reflected by uterine Retention response and vaginal opening. Based upon the mouse uterine weight method, three doses of 25 mg of the alcoholic extract showed an estrogenic activity 1:4716980 of estradiol monobenzoate.65

Antioxidant effect

Chalcone derivative, a novel group of neolignan lipid esters, and seven known phenolic compounds (formomonentin, glabridin, hemileiocarpin, hispaglabridin B, isoliquiritigenin, 4’-O-methylglabridin, and paratocarpin B) isolated from the roots and stolons of Glycyrrhiza glabra were tested in an authentic peroxyxynitrite antioxidant assay. Of these compounds, hispaglabridin B, isoliquiritigenin, and paratocarpin B were found to be the most potent antioxidant agents.61

In an in vitro study, the methanolic extracts of root of Glycyrrhiza glabra var. glandulifera was shown the antioxidant activity by using the DPPH (1,1-diphenyl-2-picyrhydrazyyl) method. The extracts showed good antioxidant activity, with a median inhibitory concentration (IC50) of 588 ± 0.86 to 2190 ± 1.73 mg/mL.66

In another study, the free radical scavenging of the methanolic extract of Glycyrrhiza glabra was investigated using DPPH. The extract showed moderate free radical scavenging activity with IC50 value of 87.152 μg/mL.66

The antioxidant activity of roots extracts of Glycyrrhiza glabra was investigated with DPPH scavenging assay. The results revealed that methanolic extract of Glycyrrhiza glabra was potent antioxidant with maximum scavenging effect of 67.22% at a concentration of 500μg/ml. The calculated IC50 for the methanol extract of Glycyrrhiza glabra was 359.45μg/ml.67

Immunological activity

In an experimental study, the alcoholic extracts of root of Glycyrrhiza glabra were showed the effect on immune modulator activity. Neutrophils when treated with alcoholic extract of Glycyrrhiza glabra showed increase in phagocytic Activity.68

The effect of Glycyrrhiza glabra root extract (0.1, 0.2 and 0.3 mg/l drinking water) was investigated on the performance and some immunological parameters of broiler chickens. Glycyrrhiza glabra root extract had no significant (P > .05) effect on immunological parameters including antibody titers against Newcastle disease and Influenza viruses, heterophil and lymphocyte percentages and heterophil to lymphocyte (H/L) ratio as well as liver and lymphoid organ (bursa of Fabricius, thymus and spleen) weights.69

Antiprotozoal activities

In in vitro studies, the root of Glycyrrhiza glabra were found to be potentially inhibit the growth of Plasmodium falicparum and Leishmania donovani, and possess antiplasmodial activity with IC50 values between 4.5 and 0.6 mg/L.70

Hepatoprotective activity

In an in vitro study, the carbon tetrachloride-induced hepatotoxicity and retorsine-induced liver damage, respectively, in mice and rats, glycyrhrizin and glycyrrhetic acid were showed Hepatoprotective activity.70

Central nervous system studies

In in vitro and in vivo studies, glycyrrhizin isolated from the G. glabra has been identified as a thrombin inhibitor and showed an antiplatelet aggregation effect. G. glabra accelerated the metabolism of cells in the bone marrow erythroid stem and increased the animal’s resistance to stress.70

Conclusion

Glycyrrhiza glabra L. root and its extract has been used in Unani System of Medicine since a long for the treatment of various ailments like pulmonary diseases, hepatitis, gastrointestinal ulcers, skin diseases etc. It is used as common ingredient in many Unani compound formulations along with other ingredients effectively. Traditionally it is used as mild laxative, anti-arthritic, antiinflammatory, anti-ulcer, anti-tussive, aphoridisiac, antioxidant, anti-diuretic etc. The pharmacological and clinical studies reported in the present review confirm the therapeutic value of Glycyrrhiza glabra in Unani prospective also. Presence of biological active chemical constituents indicate that the drug could serve as “lead” for development of safe and effective medicinal natural products or new drugs for the benefit of mankind. In this regard, further studies need to be carried out to explore the extensive therapeutic values of Glycyrrhiza glabra Linn.

References

4. Kabiruddin H., Makhzanul Mufradat, in Faisal, Deoband Saharanpur. YNM: 549-551
6. Puliaiah T., Encyclopaedidae of World Medicinal Plants, Regency Publications New Delhi 08,2006; 2: 1019-21
11. Kokate CK, Purohit AP, Gokhale SB, Pharmacognosy: Nirmali Parkashan, J M Road, Pune, 54th Ed. pp. 9.6.4-9.6.6
15. Khan MA, Multith A’zam, Central Council for Research in Unani Medicine, Ministry of AYUSH, Govt. of India, New Delhi, 110058, 2012; 1: 342-344
17. Tariq-NA, Tajal Mufradat (Khawanil Advia); Idarah Kitaab Al-Shifa Kuchelwalon, Delhi-2, 2010: 693-695


