Inflammation the Kingpin of Chronic Diseases Naturopathy as an alternative source of treatment: An updated overview

Zahida Shah*, Tabasum Ali
Department of Pharmaceutical sciences, University of Kashmir, Srinagar, Jammu and Kashmir (J and K), India

ABSTRACT
Inflammation involves a sequence of events which can be categorized under three phases viz. acute transient phase, delayed sub-acute phase and chronic proliferate phase. Inflammatory mediators develop due to enhanced vascular permeability and leads to local edema. It is followed by the migration of leukocytes and phagocytes from blood to vascular tissues which is the second phase, in the third phase, tissue degradation is followed by fibrosis. There is a powerful link between chronic diseases and chronic inflammatory disorders. Chronic low-level inflammation contributes to the pathogenesis of these several diseases like Heart disease, Cancer, Chronic lower respiratory disease, Stroke, Alzheimer’s, Diabetes, and Nephritis. The harmful side effects of synthetic drugs are numerous and there stands up the need of herbal drugs which are cost-effective and free from side-effects. Several traditional ayurvedic phytomedicines have been used in the treatment of inflammatory disorders like Ocimum sanctum, Hypericum perforatum, Boswellic serrata, Ficus racemosa etc. which act as natural anti-inflammatory agents that can help in reducing the complications associated with chronic diseases.

Keywords: Inflammation, Chronic-low level inflammation, Cancer, Diabetes, Phytomedicines

Article Info: Received 27 Jan 2019; Review Completed 28 Feb 2019; Accepted 02 March 2019; Available online 15 March 2019

Cite this article as:

*Address for Correspondence:
Zahida Shah, Department of Pharmaceutical sciences, University of Kashmir, Srinagar. Jammu and Kashmir (J and K), India

Introduction:
The word “inflammation”, derived from the latin word “inflammare”, (to set on fire), is a complex biological process which involve several chemical mediators which are induced by vascular tissue of the body, which when it comes in contact with several harmful stimuli like pollens, irritants, pathogens, and damaged cells. When human body is injured there occurs a series of chemical changes. Inflammation was prematurely considered as a single disease caused by disturbances of various fluids of the body. Nowadays, the modern concept of inflammation is a healthy process resulting from some disturbance or disease.

Table 1: Cardinal signs of Inflammation

<table>
<thead>
<tr>
<th>Cardinal Signs of Inflammation</th>
<th>Redness</th>
<th>Heat</th>
<th>Swelling</th>
<th>Pain</th>
<th>Loss of Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caused by dilation of arterioles / increased blood flow</td>
<td>Increased chemical activity and increased blood flow to skin surface</td>
<td>Caused by accumulation of blood and damaged tissue cells</td>
<td>Direct injury of nerve fibers, pressure on hematoma on nerve endings chemical irritants-bradykinin, histamine, prostaglandin</td>
<td>Increased pain/Swelling</td>
<td></td>
</tr>
</tbody>
</table>

Inflammation is frequently associated with pain, and involves occurrences such as the increase of vascular permeability, membrane alteration and increase of membrane permeability. When the injury is in the form of stress cells in the body are damaged by micro-organisms, physical agents or chemical agents. Inflammation of tissue is due to response to stress or free radicals. The humans' defensive response is characterized by redness, pain, heat and swelling and loss of function in the injured area. Loss of function depends on the site and extent of injury.
Inflammation is now recognized as an overwhelming burden to the healthcare status of human population and the underlying pathogenesis basis of a significant number of chronic diseases. Worldwide the annual mortality due to Chronic Inflammatory Diseases is expected to increase. By 2030, it has been estimated that 171 million people will be affected by chronic inflammatory diseases in the United States. There is a strong link between chronic inflammatory conditions and chronic diseases. Chronic inflammation damages the cells of the brain, heart, arterial walls, and other anatomic structures and this damage leads to various inflammatory chronic diseases. Chronic low-level inflammation contributes to the pathogenesis of these several diseases like Heart disease, Cancer, Chronic lower respiratory disease, Stroke, Alzheimer’s, Diabetes, and Nephritis (kidney inflammation). Inflammation produces complex biological changes of vascular tissues which are produced by harmful stimuli, such as pathogens, damaged cells, or irritants. Inflammation is a protective attempt by the organism to remove the injurious stimuli and to initiate the healing process. Although infection is caused by a microorganism, inflammation is one of the responses of the organism to the pathogenic organism. However, inflammation is a stereotyped response, and therefore it is considered as a mechanism of innate immunity, as compared to adaptive immunity, which is specific for each pathogen. Inflammation is part of a complex biological response to harmful stimuli.

Inflammation has been variously defined Houck (1963) as a vital response of tissue injury. Inflammation is the tissue reaction to infection, irritation or foreign substance. It is a part of the host defense mechanisms that are known to be involved in the inflammatory reactions such as release of histamine, bradykinin & prostaglandins. The development of non-steroids in overcoming human sufferings caused by inflammation such as Rheumatoid arthritis has evoked much interest in the extensive search for new drugs with this property. Inflammation is a major component of the damage caused by autoimmune diseases and is also a fundamental contributor to diseases such as cancer, diabetes and cardiovascular disease.

The inflammatory process can also be defined as a sequence of events that occurs in response to noxious stimuli, infection or trauma. The events of inflammation that underline these manifestations are induced and regulated by a large number of chemical mediators, including kinins, eicosanoids, complement proteins, histamine and monokines. Efficacy of anti-inflammatory agents in inflammatory states is indicated by their ability to inhibit the increase in the number of fibroblast during granular tissue formation.

Causes of inflammation:
The numerous causes of inflammation may be classified as
- **Microbes** e.g. bacteria, viruses, protozoa, fungi
- **Physical agents** e.g. heat, cold, mechanical injury, ultraviolet and ionizing radiation
- **Chemical agents** organic e.g. microbial toxins and organic poisons such as weed killers
- **Inorganic** e.g., acids and alkalies.

Mechanism of Inflammation:
Mechanism of inflammation is due to result of proinflammatory cytokines and chemokine release in response to injury or infection, mast cells in connective tissue as well as basophils, neutrophils and platelets leaving the blood from injured capillaries, release or stimulates the synthesis of vasodilators such as histamine, leukotrienes, bradykinins and prostaglandins. Certain products of complement pathways (C5a and C3a) can also trigger mast cells to release their vasodilators.
Diseases Associated with Chronic Inflammation:

Inflammation produces reactive oxygen species and reactive nitrogen species, which causes oxidative damage and further lead to chronic diseases. These include heart disease, cancer, chronic lower respiratory diseases, stroke, Alzheimer’s disease, diabetes, and nephritis.

• Cardiovascular diseases (CVD)

Inflammation is a fundamental part of atherosclerosis (oxidized low-density lipoprotein cholesterol evokes the inflammatory response). Circulating inflammatory cytokines are predictive of peripheral arterial diseases, heart failure, atrial fibrillation, stroke, and coronary heart disease. Reactive Protein, an acute-phase protein are produced by the liver during bacterial infections and inflammation which was found to be a common marker for detecting cardiovascular and atherosclerotic diseases.

• Cancer

Several studies reported the prominent links between chronic low-level inflammation and several types of cancers, including lymphoma, prostate, ovarian, pancreatic, colorectal and lung. There are several mechanisms by which inflammatory mediators may contribute to pathogenesis of carcinogenesis, including alterations in gene expression, DNA mutation, epigenetic alterations, promotion of tumor vascularization, and the expression of pro-inflammatory cytokines that have roles in cancer cell proliferation. Various pro-inflammatory mediators have been found to be elevated in several cancers. The pro-inflammatory biomarker STAT3 was found to be activated in 82% of patients with late-stage prostate cancer. Another inflammatory transcription factor, NF-κB, was found in 60% of colorectal cancer patients. Also, the overproduction of cytokines has shown to be associated with cancer-related fatigue.

• Diabetes

Inflammation is linked to diabetes and stands up insulin resistance. This fact has generated a growing interest in alternative anti-inflammatory therapies to slow down diabetes and complications associated with it. Nowadays,
diabetes is considered an inflammatory disease. The infiltration of macrophages into fat tissues and their subsequent release of pro-inflammatory cytokines into circulation occur at a greater rate in type II diabetics than in non-diabetics. Pro-inflammatory cytokines clearly decrease insulin sensitivity and increase diabetic complications like nephropathy etc.

- **Polycystic Ovarian Syndrome**

 Chronic low grade inflammation has emerged as a key contributor to the pathogenesis of Polycystic ovarian syndrome. The proinflammatory cytokine tumor necrosis factor α is a known mediator of insulin resistance. Glucose stimulated TNF α release from MNC along with molecular markers of inflammation are associated with insulin resistance in PCOS. Increased abdominal adiposity is prevalent across all weight classes in PCOS and this inflammed tissue contributes to the inflammatory load in the disorder. According to 2009 study in the Jurnal metabolism, levels of inflammatory markers in the blood are increased not only in overweight or obese women with PCOS but also in normal weight women thus supporting the fact that inflammation directly plays key role in PCOS.

- **Age-related macular degeneration (AMD).**

 A study report of 11 population-based studies estimating over 41,000 patients demonstrated a clear association between elevated serum C-Reactive Protein levels (> 3 mg/L) and the incidence of late onset Age-related macular degeneration. The risk of Age related macular degeneration in these high-C-Reactive Protein patients was increased over 2-fold compared with patients with CRP levels < 1 mg/L.

- **Osteoporosis.**

 The Inflammatory cytokines like TNF-α, IL-1β, IL-6 are involved in normal bone metabolism. Osteoclasts, the cells that break down (resorb) bone tissue, are a type of macrophage and can be stimulated by pro-inflammatory factors. Systemic elevations in pro-inflammatory cytokines push bone metabolism towards resorption, and have been observed to induce bone loss in persons with periodontal diseases, pancreatitis, inflammatory bowel diseases, and rheumatoid arthritis. An increase in the levels of inflammatory cytokines is also a mechanism by which menopause stimulates bone loss.

- **Cognitive decline**

 Several observational studies reported linked chronic low-level inflammation in older adults to cognitive decline and dementia, including vascular dementia and Alzheimer’s disease. One study found that people with the highest CRP and IL-6 levels (> 2.4 pg/mL) had a ~30-40% increased risk of cognitive decline compared to those with the lowest levels (< 1.4 pg/mL). Inflammatory markers can be elevated before the onset of cognitive dysfunction, indicating their potential relevance as a prognostic tool in high-risk individuals.

- **Multiple sclerosis**

 An autoimmune disease is caused by chronic inflammation in the central nervous system disease. Activated NF-κB is found in patients with multiple sclerosis. High levels of other cytokines such as IL-1α, IL-2, IL-4, IL-6, IL-10, IFN-γ, TGF-β1, TGF-β2, and TNF-α have also been found in frozen sections of central nervous system tissue from multiple sclerosis patients.

- **Vasculitis**

 Vasculitis is a group of diseases in which inflammation of the blood vessels is the distinctive feature. Such inflammation can cause narrowing and weakness of the vessel linings and in some instances a tendency to form small clots affects the vessels that can result in damage to the tissues or organs being supplied by those blood vessels, including the kidney, lung, skin, nerves, or even the brain.

- **Inflammatory Bowel Disease**

 Inflammatory bowel diseases are a group of inflammatory disorders of the colon and small intestine comprising in Crohn’s disease (CD) and ulcerative colitis (UC). Inflammatory Bowel Diseases causes inflammation anywhere along the lining of digestive tract and often spreads deep into affected tissues. A number of cytokines /chemokines and their receptors have shown to be upregulated in patients with Inflammatory Bowel Diseases. For example, the overproduction of various cytokines such as IL-2, IL-12, IL-18, IFN-γ, and TNF-α has been well registered in patients with Crohn’s Disease.

- **Ankylosing spondylitis**

 It is a chronic inflammatory disorder of unknown origin that primarily affects the spine, sternum, and large joints in the body. The most distinctive feature of this condition is a significant or complete loss of flexibility in the body and spine. People with this disorder experience lower back pain, morning stiffness, and limited motion. These symptoms are commonly improved after exercise and get worsened after sleep or prolonged rest.

- **Gout**

 Gout is a form of inflammatory arthritis that results from an excess of uric acid which is a chemical that is released as the body breaks down certain substances in food called purines in the blood of human body. In people with gout, uric acid crystallizes in the joints causing painful attacks in the affected body part – often, initially, a big toe.

- **Myositis**

 The myositis “muscle inflammation” is caused by white blood cells called lymphocytes, which are normally supposed to protect the body’s immune system. In inflammatory myopathies such as myositis, lymphocytes infiltrate the healthy muscle fibers that are destroyed and affect the functionality of muscle tissue leading to fatigue and immobility.

- **Others**

 Elevated inflammatory cytokines in the circulation are associated with several other Chronic conditions, like Crohn’s disease, pancreatitis. Inflammation is also a cause of autoimmune diseases such as rheumatoid arthritis, in which excess levels of cytokines such as TNF-α, IL-6, IL-1β, and IL-8 are often found.

Herbs as alternative source of the Treatment of Inflammatory disorders:

Medicinal plants provide an important source of new chemical substances with potential therapeutic effects. These have been used in traditional medicine for the treatment of several diseases. The number of studies investigating oral herbal anti-inflammatory drugs in the treatment of osteoarthritis (OA) and low back pain is steadily increasing and an updated Cochrane Systematic Review on ‘Herbal Therapy for Osteoarthritis’ is expected soon. In Germany, preparations from devil’s claw, willow bark and nettle herb are widely used as Osteoarthritis pytomedicines. Preparations from ginger or salai
which have been proved since time immemorial beneficial in treating chronic diseases which are cost effective and free from harmful side effects.

Conflict of Interest:
There are no conflicts of interest.

References:

ISSN: 2250-1177
CODEN (USA): JJDTAO

Shah et al. guggal 48 or the gamma linolenic acid (GLA) containing seed oils from evening primrose, borage or blackcurrant 41,42,59 are less popular for the treatment of osteoarthritic pain in Europe.

NSAIDs are among the most widely used drugs worldwide. They are prescribed for orthopaedic conditions such as osteoarthritis, soft-tissue injuries and fractures etc. 45 NSAIDs are one of the best classes of drug to prevent and treat postoperative pain. 46 The use of NSAIDs is associated with many side effects, but their harmful effects on the gastrointestinal tract, the kidney and the cardiovascular system are considered as major issues with the use of these drugs. 47 Inflammatory diseases including different types of rheumatic diseases are very common throughout the world. Several indigenous drugs have been described in Ayurveda for the management of inflammatory diseases 48 Combinations of pharmacologically active principles in different plant families and species often exhibit remarkable potency and tolerance, particularly in the long term treatment of chronic disorders, like rheumatic diseases. 49 The greatest disadvantage in presently available potent synthetic drugs lies in their toxicity and reappearance of symptoms after discontinuation. Therefore, the screening and development of drugs for their anti-inflammatory activity is the need of hour and there are many efforts for finding anti-inflammatory drugs from indigenous medicinal plants 49. Lipopolysaccharide (LPS) – activated macrophages are usually used for evaluating the anti-inflammatory effects of various materials. Lipopolysaccharide is a principle component of the outer membrane of Gram-negative bacteria which is an endotoxin that induces septic shock syndrome and stimulates the production of inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-a (TNF-a), interleukins, prostanoids, and leukotrienes 51,52,53. It is important to mention that more than 70% of anti-inflammatory drugs are synthetic and among all of these plant derived prototype aspirin is considered as one of the most effective analgesic and anti-inflammatory agent and commonly used in modern medicine. Several terrestrial plants have been used in traditional ayurvedic medicine for treatment and management of distinct anti-inflammatory disorders and wound healing. Such as Boswellia serrata (burseraceae), curcuma longa (zingiberaceae), Ficus racemosa (moraceae) and anodocimium sanctum (labiates) and hypericum perforatum (clusiaceae) and their active principle constituents as boswellic acid, curcumin, racemoc acid and flavonoid and hyperforin have shown to be responsible for pharmacological action. The anti-inflammatory action of these compounds have been associated with the inhibition of prostaglandin/ or leukotrienes synthesis via interfering with COX and 5-LOX enzyme or inhibiting their expression. Unlike modern allopathic drugs which are single active components that target one specific pathway, herbal medicines work in a way that depends on an orchestral approach. A plant contains a multitude of different molecules that act synergistically on targeted elements of the complex cellular pathway. Medicinal plants have been source of wide variety of biologically active compounds for many centuries and used extensively as crude material or as pure compounds for treating various disease conditions.

Conclusion:
There is powerful link between chronic diseases and inflammation. Inflammatory biomarkers play an important role in the elevation of chronic diseases which is a critical issue and needs to be taken care of. Focusing on reducing inflammatory stress can reduce the complications of Chronic Diseases. Phytomedicines play an important role in curing these diseases, as they contain important phytoconstituents

42. Leventhal LJ, Boyce EG, Zurier RB. Treatment of rheumatoid arthritis with black currant seed oil. Rheumatol. 1994;33:847-852

