An overview about *Hedychium spicatum*: a review

Shafiqa Rasool *, Mudasir Maqbool
Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal Srinagar-190006, Jammu and Kashmir, India

ABSTRACT

The Indian Himalayan Region (IHR) serves as tremendous repository of plant biodiversity which is derived from extreme altitudinal gradients and phenomenal geographic provinces and has been proved as the richest reservoir of medicinal plants and aromatic plants. The lavish range of plant biodiversity in IHR is supported by various landscape features that provide myriad of habitats. *Hedychium spicatum* Buch-Ham (Zingiberaceae), commonly known as spiked ginger lily, is found in the entire Himalayan region. Rhizome contains about 4% of essential oil and its phytochemical investigations have shown the presence of a variety of terpenoids (monoterpensoids, sesquiterpenoids and diterpenoids). Traditionally, the rhizomes are used in the treatment of respiratory disorders, fevers, tranquilizer, hypotensive, antispasmodic, CNS depressant, analgesic, anti-inflammatory, antimicrobial, antioxidant, antifungal, pediculicidal and cytotoxic activities. The family Zingiberaceae well known for its immense medicinal values is distributed widely throughout the tropics, particularly in Southeast Asia. Zingiberaceae family is an important natural resource that provides many useful products for food, spices, medicines, dyes, perfume and aesthetics. Ethnobiologically, *H. spicatum* is not commonly popular throughout the Indian Himalayan region, but multifarious uses are practised specifically in different regions. In this review, we will briefly explain about the various multi-faceted aspects about *Hedychium spicatum*.

Keywords: *Hedychium spicatum*, Chemical composition, Rhizomes, Zingiberaceae.

INTRODUCTION

The Indian Himalayan Region (IHR) serves as tremendous repository of plant biodiversity which is derived from extreme altitudinal gradients and phenomenal geographic provinces and has been proved as the richest reservoir of medicinal plants and aromatic plants. The lavish range of plant biodiversity in IHR is supported by various landscape features that provide myriad of habitats. IHR is expanded up to approximately an area of 5, 91,000 km² and constitute five biogeographic zones with altitude ranging from 200–8000 m. Out of these geographic regions Western Himalayas are the store house of medicinal and aromatic plant diversities. IHR gives shelter to 18,440 plant species out of which 8,000 are angiosperms, 44 are gymnosperms and 6001, 736, 1159 and 6900 Spp. of pteridophytes, bryophytes, lichens and fungi, respectively. Most of these plant species are used by the inhabitants of the IHR in for medicine, food, fuel, fodder, timber. Out of the total species of vascular plants, 1,748 species are medicinal and are used in different systems of medicine. Two out of eighteen hot spots bio diversities of the world are located in India. India is also one of twelve mega biodiversity countries in the world. India contributes about 45,000 plant species (the total number may be even close to 60,000, as several parts of India are yet to be botanically explored) to the world biodiversity. Of these, seed bearing plants account for nearly 15,000-18,000 species. Varied climatic conditions (such as, alpine in the Himalaya to tropical wet in the south and arid in Rajasthan) have given rise to rich and varied flora in the Indian subcontinent. In order to promote Indian herbal drugs, there is an urgent need to evaluate the therapeutic potentials of the drugs as per WHO guidelines. Ironically, not many Indian products are available in standardized form, which is the minimum requirement for introducing a product in the Western market. Zingiberaceae is the largest family in the order Zingiberales with 53 genera and over 1200 species. Based on morphological features i.e., number of locules and placentation in the ovary, development of staminodia, modifications of the fertile anther and rhizome-shoot leaf orientation, so far four tribes (Alpinieae, Globoseae, Hedychieae and Zingiberieae) have been recognized within the Zingiberaceae.

BOTANICAL DESCRIPTION OF PLANT

Hedychium Spicatum (Ham-ex-Smith), family *Zingiberaceae*, is a small hardy rhizomatous perennial herb that grows to around 1-2m, with green leaves, and large orange whitish flowers. It is also known as Shati in Ayurvedic classics,
Kapoor Katcheri in Hindi and commonly known as “Spiked Ginger Lily”. Leaves are about 30 cm in length, oblong, lanceolate, variable in breadth, glabrous. Spike is 30 cm, densely flowered; bracts large, oblong and green. Flowers are hermaphrodite, ascending and closely imbricate. Corolla tubes are 5-6.3 cm; segments 2.5 cm; lanceolate, lip cuneate, deeply bifid, broad, not at all dawed; filaments are pale red; anther linear 6-8.5 mm. Fruit is capsule type; glabrous and globose, when ripe the three valves are reflexed exposing numerous small black seeds embedded in a red aril. Rhizomes are 15-20 cm long; 2.0-2.5 cm in diameter, externally yellowish brown, which turns to dark brown on storage.

NATIVITY, ENDEMICS AND DISTRIBUTION OF H. SPICATUM

Hedychium spicatum is a native herb of South-East Asian countries 14, 15 and near endemic to the Himalayan Region 16 with its diverse growth habitats in sub-tropical to temperate zones 9-10, 16-18. It has a wide distribution in Bhutan 19; Nepal 20, 21; Japan 22; Thailand 23, 24; Pakistan 25 and China 12. In India, it has been found in Andhra Pradesh 26, 27; Arunanchal Pradesh 28, 29; Darjeeling 30; Himachal Pradesh 31-33; Karnataka 34; Manipur 35, 36; Meghalaya; Mizoram 37; Nagaland 37; Orissa 38 and Sikkim 39, 40. This plant is grown as a sub-tropical bedding plant in a rich and damp soil. It cannot grow in shade. It requires sunny weather but can tolerate temperature down to -2°C. This plant has been known to withstand temperature as low as -16°C in Germany. Flowering occurs in the months of July-August and seed formation occurs in September – October. Its easy availability and several natural populations in shady moist and rocky habitats, near water courses and in open or dense oak dominated or mixed forest regions of Indian Central Himalayan Region from 1200- to 2400 m have been well documented 41-45.

CHEMICAL COMPOSITION OF H. SPICATUM

The rhizome extract has been reported to contain essential oil, starch, resins, organic acids, glycosides, albumen and saccharides, which has been advocated for treatments of bronchitis, indigestion, eye disease and inflammations. It is also used as a laxative, stomachic, carminative, and stimulant, tonic to the brain and in diarrhea. The essential oil is reported to have anti-microbial activity against bacteria and fungi 50, 51. Rhizome contains about 4% of essential oil and its phytotoxic investigations have shown the presence of a variety of terpenoids (monoterprenoids, sesquiterpenoids and diterpenoids) 52. Various chemical constituents reported in Hedychium spicatum essential oil are α-pinene, β-pinene, limonene, 1,8 cineole, 2-alkanones, linalool, camphor, linalyl acetate, β-terpineol, borneol, β-caryophyllene, γ-cadinene, humulene, terpinolene, p-cymene, benzyl cinnamate, benzyl acetate, lindlaylacteate, γ-terpine, β-phellandrene, methyl paracumarin acetate, cinnamic ethyl acetate, ethyl-p-methoxy cinnamate, ethyl cinnamate, d-sabinene, sesquiterpene-cadinene, sesquiterpene alcohols, sesquiterpene hydrocarbons, drimane and labdane derivatives, hedychone, 7-hydroxyhedychene, spicatanic acid, spicatanol and spicatanomethyl ether 53. The essential oil from rhizomes are used in the treatment of respiratory disorders, fevers, tranquilizer 54, hypotensive, anti-spasmodic, CNS depressant, analgesic 55, anti-inflammatory 56, antimicrobial 57, antioxidant, antiulcer, anti-inflammatory and cytotoxic activities 58. The rootstocks of the herb have bitter camphor like taste and strong aromatic odor. Therefore, it is widely used in incense and fragrant preparations. Rootstock is carminative, emenagogue, expectorant, stimulant, stomachic and tonic. It is also useful in the treatment of liver diseases and poor circulation due to thickening of blood 60.

PHARMACOLOGICAL ACTIONS

The following are the pharmacological actions of Hedychium spicatum reported till date:

Antidiabetic activity:

The essential oil obtained from the rhizomes of Hedychium spicatum possesses significant antidiabetic activity. The main compound responsible for antidiabetic activity was found to be 1, 8 cineole. The oral doses of 0.3 ml/rat of Hedychium spicatum essential oil administered for 14 days reduced the blood glucose and urea level significantly as compared to the normal control 62.

Tranquilizing activity:

Essential oil of rhizomes of H. spicatum was reported to possess mild tranquilizing action of short duration. It depressed conditioned avoidance response, rotarod performance and potentiated the phenobarbitone induced hypnosis and morphine analgesia in rats 63.

<table>
<thead>
<tr>
<th>Antioxidants (mg/100 g)</th>
<th>Planted</th>
<th>Wild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenolics</td>
<td>218.00</td>
<td>181.00</td>
</tr>
<tr>
<td>Xanthophyll</td>
<td>0.23</td>
<td>1.65</td>
</tr>
<tr>
<td>-Carotene</td>
<td>6.90</td>
<td>20.50</td>
</tr>
<tr>
<td>β-Carotene</td>
<td>19.30</td>
<td>6.180</td>
</tr>
<tr>
<td>DL- tocopherol</td>
<td>4.90</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Antihistaminic, anti-inflammatory and ulcer protective activity:

Aqueous and ethanolic extracts of the dried rhizome of H. spicatum were evaluated for anti-histaminic and ulcer-protective activities in guinea pig (GP), anti-inflammatory and analgesic activities in rat and acute toxicity in mouse. Treatment with aqueous and ethanolic extracts of Hedychium spicatum showed significant gastric ulcer protection against histamine-induced gastric ulcer in GPs. Anti-inflammatory effect was also produced by both the extracts against carrageenan-induced paw edema in rats from 1h onwards, and this was greatest at 3h. The benzene extract of rhizome of H. spicatum possessed significant analgesic activity in acetic acid induced writhing in mice. Both the extracts did not show any toxic effect like increased motor activity, salivation, clonic convulsion, coma and death in mice even at the 2000 mg/kg dose (nearly 10 times of the optimal effective dose), indicating the safety of the extracts 64.
Pediculicidal activity:
The rhizome essential oil extracted from H. spicatum showed significant high in vitro pediculicidal activity at 5 %, 2 %, 1 % concentration, than 1 % permethrin based product 65.

Antimicrobial activity:
Essential oil, petroleum ether and chloroform extracts of Hedychium spicatum showed inhibitory activity against Gram (+) and Gram (-) bacterial cultures, including a strain of Dimethyl sulfoxide methicillin and vancomycin resistant Staphylococcus aureus and fungal cultures. Rhizome terpenoid component of Hedychium spicatum was reported to possess antimicrobial activity against Staphylococcus aureus, Shigella flexneri, Pasteurella multocida and Escherichia coli, whereas, ethanol fruit extract of H. spicatum showed antibacterial and antifungal properties against Salmonella sps., Escherichia coli and filamentous fungi 66, 67.

Antioxidant and hepatoprotective activity:
The study of antioxidant and hepatoprotective activity of methanolic extract of rhizomes of Hedychium Spicatum (MEHS) in CCl4-induced hepatotoxicity model in rats revealed significant activities on substantially elevated serum enzymatic levels of AST, ALT, and ALP. Total bilirubin was found to be restored towards normalization significantly by the MEHS in a dose dependent manner with maximum hepatoprotection at 400 mg/kg dose level. The histopathological results also supported the biochemical evidences of hepatoprotection. Elevated level of superoxide dismutase (SOD) and decreased level of malondialdehyde (MDA) further strengthen the hepatoprotective observations. The results of the study revealed that MEHS have potent antioxidant activity and hepatoprotective activity against CCl4-induced hepatic damage in experimental animals.

Terpenoid compositions of rhizome of Hedychium Spicatum were found to possess antioxidant activity. The rhizome essential oil exhibit moderate to good Fe2+ chelating activity whereas the essential oil a completely different DPPH radical scavenging profile 67.

Antimalarial activity:
The 50 % extract of the rhizome of H. spicatum showed antimalarial activity against Plasmodium berghei strain (NK 65) 69.

Cytotoxic activity:
Phytochemical investigation of chloroform extract from rhizomes of Hedychium Spicatum led to the isolation of two new labdane type diterpenes. All the isolates and its derivatives were tested for in vitro cytotoxicity on different cancer cell lines by MTT assay. The cell lines used in this study were HELA (cervical cancer), MCF-7 (breast cancer), HEP G2 (liver cancer) and HT-29, COLO-205 (colon cancer). From the results of the cytotoxicity evaluation of these constituents H. spicatum, it appeared that compound C15H2O2 275.1623 displayed potent activity against Hela cell line with the IC50 0.30 μg/mL, which was more potent than the standard doxorubicin.

Results indicated that compounds C15H2O2 235.1692 and C15H2O2 275.1618 may serve as an important natural lead compounds for future development as they showed potent cytotoxic activity against Hela cell lines with an IC50 value of 0.3 μg/mL and 1.80 μg/mL, respectively 70.

Hypocholesterolemic Activity:
Chronic administration of β-sitosterol subcutaneously to rats for 60 days was well tolerated and there was no clear cut evidence of any gross or microscopic lesions either in the liver or kidney. Liver and kidney function tests were assessed by determining the blood/serum parameters like hemoglobin, blood glucose, serum protein, serum bilirubin, serum cholesterol, serum GPT and serum GOT. All the parameters were in the normal range except serum proteins and serum cholesterol. Serum cholesterol was the only variable which depleted markedly in both the sexes in a dose dependent manner suggesting intrinsic hypocholesterolemic effect of sterol 71.

Anthelmintic activity:
The anthelmintic activity of rhizomes of H. spicatum against adult Indian earthworms, Pheretima posthumana was evaluated. The time taken for each worm for paralysis and death was determined. The results were compared with that of standard i.e., piperazine citrate. Methanol extract of H. spicatum produced dose dependent anthelmintic activity whereas aqueous extract was not all effective. Methanol extract showed better anthelmintic activity when compared with the standard drug piperazine citrate 72.

INDUSTRIAL USE OF H. SPICATUM
Its powdered rhizome, extract and essential oil are mixed in several herbal formulations. Rhizome of H. spicatum is source of essential oil 44, 49 and several natural secondary metabolites viz., terpenes, alcohols, aldehydes and phenols 49. Its essential oils have many medicinal efficacies, including anti-inflammatory and analgesic effects. Its use as a mild tranquilizer and Central Nervous System depressant 54, antibiotic and antimicrobial 50; in-vitro pediculicidal 65; in vitro Hepatoprotective and application in cosmetic products creates a high industrial demand for raw material 73.

CONCLUSION
On the basis of the present review, it has been concluded that Hedychium spicatum is medicinaly very important plant. Aqueous and ethanolic extracts of rhizomes of Hspicatum was found to have wide range of pharmacological activities. Moreover its clinical profile is being studied for its activity in Bronchial asthma and pulmonary eosinophilia. Due to illegal harvesting and indiscriminate exploitation of its rhizome extract in making various types of drugs, the natural plantation of this species has become extinct. There is need to re-establish this plant in its natural habitat. Therefore, there is need to plan out proper propagation and cultivation of this species at large scale.

REFERENCES

