Technology Overview and Current Biomedical Application of Polymeric Nanoparticles

Gurpreet Singh *, Abdul Faruk, Preet Mohinder Singh Bedi

Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar Punjab-143005, India.

ABSTRACT

Polymeric nanoparticles are of great importance in the treatment of various diseases, due to the flexibility in the modification of their structures. Recent advances in the field of nanotechnology facilitate the engineering of multifunctional polymeric nanoparticles. All the scientific efforts of the pharmaceutical companies are mainly focusing on two basic aspects, one is to discover new molecules of potential therapeutic interest and second is to develop of a new drug delivery system. In the last few decades, research and development (R&D) scientists has directed their efforts toward formulating novel drug delivery systems that includes sustained and controlled release, modified release and targeted drug release dosage forms. Application of nanoscience and nanotechnology has opened several new possibilities in development of formulation. This review compiles the different preparation methods of polymeric nanoparticles and then briefly explained their current potential applications.

Keywords: Polymeric nanoparticles, PLGA, Biomedical applications, Biodegradable, Dialysis method

INTRODUCTION

It has been well documented that drugs predicted from in vitro studies, fails to reach at target site in adequate quantities in vivo studies1. Correspondingly, a high amount of the administered drug is left to act on healthy tissues, often to the point of generating dose-limiting side effects2. Research related to delivery of drug is clearly moving from the micro to nano size range. Therefore, nanotechnology is evolving as a potential field in medicine that may provide significant therapeutic benefits of existing drugs. The most difficult tasks for pharmaceutical researcher is to develop an effective drug delivery system which is capable of carrying drugs, specifically to a desired site of action. Attempts have been made to reformulate the existing conventional formulations into nano delivery systems for better therapeutic use and positive scientific breakthroughs. These systems mainly include polymeric and solid lipid nanoparticles, liposomes and nanoemulsions. The ultimate objective of these nanodelivery systems is to markedly improve the efficacy and reduce the toxic effects of a drug3.

Recently, nanoparticles based delivery system has been proposed as promising colloidal drug carriers system for such purpose4. Nanoparticles (NPs) are a type of colloidal drug delivery system which is comprised of particles in size range from 10 to 1000 nm. Nanoparticles may or may not results size related properties that differ significantly from those observed properties in fine or macro particles5.

Nowadays, nanoparticles are widely used as carrier system in variety of applications due to their ability to cross organ barriers such as cell membrane and blood brain barrier etc. They are made up from biocompatible polymer and lipids that provide sustained and controlled release effect by either improved dissolution or diffusion mechanism6,7. Now a day's nanoparticles are considered as very prolific device for drug delivery system. Dr. Gregory Gregoriad proposed the first liposome's in 1974 as nanoparticulate drug delivery systems which resulted in several breakthrough discoveries by multidisciplinary approaches8.

The concepts and approaches established in physics, polymer and colloidal chemistry, pharmaceutics, biophysics and molecular biology have described
nanotechnology as a multidisciplinary field. Currently, major research aimed at the development of biocompatible nanocarriers for drugs delivery, cell imaging and for other biomedical applications9.

POLYMERIC NANOPARTICLES

Polymeric nanoparticles (PNs) are submicron-sized colloidal particles in which therapeutic agent can be encapsulated within their polymeric matrix or adsorbed to the surface of nanoparticles. There are two types of nanoparticles on basis of formulation method i.e., Nanospheres and Nanocapsules10,11 as depicted in Figure 1. Nanospheres have a matrix system in which drug is uniformly entrapped, dispersed or encapsulated within the particles or attached to their surfaces. Nanocapsules are the liquid-solid core system in which the drug is restricted to a polymer membrane of natural or synthetic polymers12. Active moiety is protective by coating and can be used for the controlled release and targeting of drugs12,14.

![Figure 1: Schematic representation of nanospheres and nanocapsules](image)

Polymeric nanoparticles are prepared from a wide variety of natural or synthetic biodegradable (e.g. albumin, chitosan, alginate, PLGA) and non-biodegradable polymers as describe in Table-1. By the virtue of their nano size, polymeric nanoparticles can also be targeted to specific cells and locations inside the body15. Depending on the nature of polymer properties, they are designed in such a way that they can be activated by change in the environmental conditions such as physiological pH, temperature, or chemical stimuli16. Macrophages are well recognized phagocytic cells of the reticuloendothelial system and responsible for the uptake and clearance of administered drug loaded nanoparticles. Generally, when drug loaded nanoparticles are opsonized, phagocytosis/endocytosis may take place and nanoparticles are degraded in a phagolysosome/endolysosome17. However, nanoparticles have the capability to escape from the endolysosomal compartment which may allows the delivery of drug to the cytoplasm and finally to the nucleus. Thus, NPs are easily taken up by phagocytic cells and that’s makes them ideal for intracellular delivery of anti-retroviral drugs. Other applications of NPs include cytoplasmic release of plasmid vectors and therapeutic agents15,18,19.

![Table 1: List of commonly used polymers](table)

<table>
<thead>
<tr>
<th>Type of polymers</th>
<th>Class of polymers</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic polymers</td>
<td>Polyamides</td>
<td>Polyamino acids, Polypeptides</td>
</tr>
<tr>
<td>Polyester</td>
<td>Poly(glycolide), Poly(D,L-lactide), Poly(D,L-lactide-co-glycolide), Poly(ε-caprolactone), Poly(dioxanone) Poly(hydroxybutyrate)</td>
<td></td>
</tr>
<tr>
<td>Polyanhydride</td>
<td>Poly[bis(p-carboxyphenoxy) propane-co-sebacic acid], Poly(fatty acid dimmer-co-sebacic acid), Poly(sebacic-co-recinolic acid)</td>
<td></td>
</tr>
<tr>
<td>Naturally occurring polymers</td>
<td>Polysaccharides</td>
<td>Dextran, Chitosan, Alginate, Starch, Hyaluronic acid, Gellan</td>
</tr>
<tr>
<td>Proteins</td>
<td>Collagen, Gelatin, Bovine serum albumin (BSA), Human serum albumin (HSA)</td>
<td></td>
</tr>
</tbody>
</table>

BIODEGRADABLE POLYMERS

Biodegradable polymers are polymer that are comprised of monomers linked to each other through a functional group and have unstable linkage in backbone that degrades within the body by enzymatic or chemical degradation as a result of natural biodegradable process15. Also when used as drug delivery system it gets eliminated from body and need not to remove the delivery system after complete release of the active ingredients20. The release of drug from biodegradable polymers drug delivery system is generally governed by either erosion of surface polymer or swelling of polymer and subsequent release of drug or by diffusion of physically entrapped drug21.
The major biomedical applications of biodegradable polymers are15, 21, 22

- Constructing depot injections
- Biodegradable sutures
- Replacement of bone grafts
- In tissue generation
- For protein drug delivery
- For gene drug delivery for sustain and controlled drug delivery systems

Common characteristics of all biodegradable polymers are23

- Stability and compatibility with the drug molecule
- Biocompatible and biodegradable in nature
- Ease of production on a larger scale
- Suitable for sterilization, and
- Flexibility to prepare delivery system with multiple release profiles

The general advantages of nanoparticles includes24, 25

1. Due to small and narrow particle size distribution of nanoparticles, site specific drug delivery can be achieved
2. Provide a sustained and controlled release of active drug over a long period
3. Protection from chemical and enzymatic degradation of incorporated drug
4. Provide a predefined drug release profile
5. They can be lyophilized and spray dried to resolved stability issues
6. Surface modification can be easily done to achieve both active and passive drug targeting
7. They offer better therapeutic effectiveness response per unit dose as compare to conventional dosages form
8. Biodegradability in blood circulation
9. pH sensitive polymeric nanoparticles can enhanced the oral bioavailability of poorly water soluble drugs26
10. Site specific drug can be achieved by surface targeting ligand nanoparticles/magnetic nanoparticles for cancer therapy, vaccine and targeted antibodies27

Limitation of Nanoparticles

1. Particle aggregation during storage results in increase the particle size which is difficult in physical handling28
2. Limited drug loading and burst release29
3. Overall high production cost and scaling up problems30
4. Intracellular degradation of nanoparticles due to phagocytosed by cells they may cause cytotoxic effects31

METHODS OF PREPARATION OF POLYMERIC NANOPARTICLES

The selection of materials and method of preparation is dependent on following factors:

- Size of desired nanoparticles
- Inherent and physicochemical properties of the drug, e.g., aqueous solubility and stability32
- Surface charge properties and permeability33
- Degree of biodegradability, biocompatibility, Antigenicity and toxicity34
- Desired drug release rate profile35

Emulsion and diffusion method

This is the most widely used method of preparation for polymeric nanoparticles. In this method, the encapsulating polymer is dissolved in partially water-miscible organic phase (such as benzyl alcohol, propylene carbonate, ethyl acetate). The organic phase is emulsified by stirring with an aqueous solution of a suitable surfactant i.e., anionic sodium dodecyl sulfate (SDS), non-ionic polyvinyl alcohol (PVA) or cationic didodecyl dimethyl ammonium bromide (DMAB). The diffusion of the organic solvent and the counter diffusion of water into the emulsion droplets induce formation of nanospheres or nanocapsules, according to their oil-to-polymer ratio36.

This technique presents several advantages, such as high encapsulation efficiency, no need for homogenization, high batch-to-batch reproducibility, ease of scale-up, and narrow size distribution. However, disadvantages includes that the high volumes of water is to be eliminated from the suspension and less suitable for water-soluble drugs due to leakage into the saturated-aqueous external phase during emulsification, reducing encapsulation efficiency37. While, parameters that influenced the size of nanoparticle are: polymer concentration, solvent nature, surfactant/polymer molecular mass, viscosity, stirring rate, nature of solvent, temperature and rate of water addition38.

Emulsification-solvent evaporation method

Emulsion evaporation is the most popular and oldest method used for preparation of polymeric nanoparticles. The method involves two steps; emulsification of an organic solvent with a polymer in an aqueous solution of surfactant followed by the evaporation of organic phase. Which may leads to polymer precipitation and formation of nanoparticles. Briefly, the organic phase or aqueous phase (internal phase) is poured into an external phase (aqueous or organic phase) in which a surfactant is dissolved and is emulsified. It was further subjected to evaporation of organic solvent under vacuum, which leads to polymer precipitation and formation of nanoparticles. The nanoparticles were collected by centrifugation and washed with distilled water to remove surfactant residue or any free drug39. Most commonly used organic solvents are ethyl acetate, chloroform and methylene chloride. Biphasic emulsions (o/w or w/o) and multiple emulsions (w/o/w) can be used to accommodate the active drug with variable properties. The o/w emulsion is used for the entrapment of hydrophobic drug, whereas double emulsion (w/o/w) is used for the entrapment of hydrophilic drug. This method is widely used for the preparation of nanoparticles, because it is easy to scale-up, and can be adjusted (by use of the double-emulsion method) to encapsulate water-
soluble drugs39,40. This technique has been successfully used for encapsulation of a hydrophobic drug, while in case of hydrophilic drug entrapment was less41. Further, modification of this method includes automated batch scale production and is known as high pressure emulsification solvent evaporation process42. This method involves preparation of an emulsion (O/W or W/O) which is then subjected to homogenization under high pressure followed by high speed stirring to remove any organic solvent residue43. The size of nanoparticles can be controlled by amount and type of polymer, surfactant, viscosity of organic and aqueous phases, temperature and rate of stirring44. Commonly used polymers are Poly(lactic acid), poly(lactic-co-glycolic acid), Ethyl cellulose45, and Polycaprolactone46.

Oil in water emulsion technique (single emulsion)

This technique is based on the emulsification of an organic phase, which contains polymer and drug in an aqueous phase, followed by the removal of the organic solvent by evaporation method. A number of hydrophilic surfactants such as polyvinyl alcohol, or Pluronic F68 are generally used in an aqueous phase. For the formation of nanoemulsion, size reduction of emulsion droplet is done by sonication or microfluidization. The evaporation step is required to eliminate the organic solvent present in the organic phase. This leads to the precipitation of the polymer as nanoparticles with a diameter in the nanometric range46.

There are some considerable variables which effects the preparation of nanoparticles that includes molecular mass and concentration of polymer, co-polymer ratio and end groups, surfactant nature, phase ratio, solvent nature, rate of evaporation, drug entrapment, additives and sterilization47.

Double-emulsion (w/o/w) method

This method is a modification of emulsification solvent evaporation method and is useful for encapsulation of proteins and hydrophilic drugs. In this method, the primary emulsion (w/o) is prepared by a aqueous solution containing the hydrophilic drug and polymer in the organic phase containing a suitable surfactant, having low HLB value such as Span 80, Pluronic-F68. The primary emulsion is produced by strong shear stress and re-emulsified in an external aqueous phase of a surfactant for formation of water in-oil-in water (w/o/w) emulsion. Further, droplet size reduction of emulsion is achieved with the help of sonication or homogenization. Finally, organic phase residue removed with the help of evaporation under vacuum and nanoparticles can be collected by centrifugation at high speed48. The major drawback of this method is the formulation of large sized nanoparticles and the leakage of hydrophilic drugs. Overall production of nanoparticles depends upon polymer/surfactant ratio, polymer concentration, type and nature of surfactant, viscosity, energy input, evaporation and phase ratios49.

Solvent displacement/ Nanoprecipitation

This technique was first described by Fessi et al. 1989 and is also called as solvent displacement method50. This method is commonly used to incorporate lipophilic drugs and involves the precipitation of polymer from an organic phase. In this method, drug, polymer and lipophilic surfactant (e.g., phospholipids) are added in a semi-polar water-miscible solvent (i.e., acetone or ethanol). Under magnetic stirring, this solution is added drop wise into an aqueous phase solution containing a stabilizer. Rapid diffusion of the solvent, facilitate instant formation of colloidal nano suspension. Then organic solvent is removed under reduced pressure from the suspension51. This technique is suitable for lipophilic drugs which allow the formation of nanocapsules with high drug loading efficiencies. This method is not suitable for water miscible solvents, in which the diffusion rate is high to produce spontaneous emulsification and may leads to instability when added in water. In some cases, the entrapment efficiency of drugs can be increase by use of acetone/dichloromethane which increases the mean particle size. The particles size and drug entrapment efficiency depend upon the rates of addition of the organic phase into the aqueous phase52. This technique has been used for various polymers such as poly(lactic-co-glycolic acid), Poly(lactic acid) and Polycaprolactone etc41,53.

Dialysis method

This method is a simple and relatively effective method for preparation of polymeric nanoparticles with small and narrow size distribution. Briefly, drug and polymer is dissolved in an organic solvent and are put in the dialysis tube (semi-permeable membranes having a appropriate molecular weight cut off) which is kept in a aqueous phase. The organic phase diffuses out through the pore of dialysis membrane into the aqueous phase which resulted in decrease in interfacial tension between two phase. Subsequently, displacement of organic solvent results in loss of solubility of polymer and may form homogenous suspension of nanoparticles54. The mechanism of formation of nanoparticles by dialysis method is similar to that of nanoprecipitation suggested by the Fessi et al50.

Emulsion Polymerization Method

This is in situ polymerization of monomers in an aqueous solution containing surfactant which results in formation of nanoparticles. Drug is added during polymerization process or is adsorbed on nanoparticles after completed polymerization. The nanoparticle can be purified and recovered after removal of residues of stabilizers and surfactants by centrifugation and reconstituted in an isotonic medium55, 56. One another alternative method is mini-emulsion polymerization method, in which co-stabilizer and high-shear energy (sonication, ultrasound, etc) is used with mixture of monomer, surfactant and a initiator57. This method has been reported for the preparation of nanoparticles from organic and inorganic materials and also for hybrid nanoparticles58.

Salting out method

This method is reported by Ibrahim et al and Bindshaedler et al and is closely related to solvent-diffusion method. In this method, the polymer is dissolved in water-miscible organic phase, such as acetone or tetrahydrofuran. The ideal choice is acetone because of the high miscibility with water and can be easily removed. The drug and polymer dissolved in organic phase and emulsified in an aqueous phase, under high mechanical stirring. The aqueous phase consisted of emulsifying agent with a high concentration of salting out agent. The commonly used salting out agents are magnesium chloride, calcium chloride, or sucrose. In comparison to the emulsion diffusion method, the presence of salts results in no diffusion of the solvent59. The rapid addition of water to the o/w emulsion under slow stirring reduces the ionic strength and which leads to the movement of organic solvent to the aqueous phase and resulted in formation of
nanoparticles. In final step, salting out agent is removed by centrifugation\(^6\). The salting out method is suitable for heat sensitive substances. Important variables to be considered includes polymer concentration, nature and concentration of surfactant, molecular mass of polymer, stirring speed and time, and solvent used and cryoprotectants\(^{64,53}\).

Coacervation or Ionic Gelation method

Nowadays, much attention of research has been focused on production of biodegradable nanoparticles using polymers such as chitosan, gelatin and sodium alginate having features like biocompatibility and low toxicity. Calvo et al introduced a method for preparation of hydrophilic chitosan nanoparticles by ionic gelation\(^6\). In this method, one aqueous phases consisted of solution of chitosan polymer and a di-block-co-polymer ethylene oxide or propylene oxide (PEO-PPO) and the other phase is solution of sodium tripolyphosphate. Nano size coacervates are formed due to an interaction of cationic group of chitosan and anionic tripolyphosphate. Coacervates are produced due to electrostatic interaction between both aqueous phases whereas conversion of material from liquid to gel takes place due to ionic interaction at room temperature. Cross-linking agent such as glutaraldehyde solution (25%) can be used for hardening of coacervates\(^3\). Desired property of the nanoparticles can be achieved by concentration of cross linker, temperature, pH, addition rate and agitation speed\(^64\).

Spray drying method

Spray drying has been considered as widely used method for the production of nano/micron-sized particles of heat-sensitive materials. In this method, solution droplet is converted into a dry particle by evaporation of the solvent in a single-step process. Thermo-labile compounds such as proteins and enzymes intended for therapeutic and diagnostic purposes have been successfully developed as spray-dried product. This method is widely used to improve the morphology and particle size of dried powder by varying the process variables and the formulation factors. It is also suitable for protein drugs which are administered as spray dried powders by pulmonary and nasal routes for therapeutic purposes\(^65\). It has been reported that dried particles of water soluble or water insoluble drugs can be prepared by use of various polymers which resolved the issue of drug leakage\(^66\) and thus, the drug amount in particles can be accurately determined\(^67\). Innovative advancement in spray drying technology is impact on development of new spray dryers for pharmaceutical industry, which resulted in high product yield with nano size range\(^68\).

Supercritical fluid technology method

In conventional methods, organic solvents used are unsuitable for environment as well as to physiological and biological systems. Therefore, the supercritical fluid technology has been introduced as environmentally safe method for preparation of nanoparticles\(^69\). Supercritical fluids remains as a single phase without impact of pressure and having intermediate properties of a liquid and a gas. They are commonly used in the production of inorganic and hybrid nanomaterials. Supercritical carbon dioxide (SCCO\(_2\)) is the most extensively used fluid because of its safe and non-flammable nature. They are commonly employed in supercritical anti-solvent (SAS) and rapid expansion of critical solution (RESS) methods. SAS method, a solid sample is dissolved in an organic or inorganic liquid solvent and which injected into a supercritical fluid under the high pressure. Under these conditions, miscibility of solid solute is reduced in the supercritical fluid which results in the precipitation of the solute and the subsequently formation of nanoparticles\(^70\). While in RESS method, the solid sample is saturated in a supercritical solvent and is passed through a very fine nozzle at high speed that resulted in precipitation of the solute due to expansion/decompression effect of the system. The overall morphology and size distribution of solute particles are dependent on expansion conditions. Other factors that affect overall production process include nature of solute, supercritical solvent, operating pressure and temperature conditions. Supercritical fluid technology is appropriate for bulk production but costly design of equipment is major limitation\(^71\).

APPLICATIONS OF POLYMERIC NANOPARTICLES

The extensive advancement in the area of science results in innovative ideas which lead to novel drug delivery systems. Recently reported outcomes of polymeric nanoparticles are summarized in table 2.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Carrier system</th>
<th>Drug /Molecule</th>
<th>Recent applications</th>
<th>Year</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLGA nanomatrix</td>
<td>Topotecan and Thymoquinone</td>
<td>Co-delivery of topotecan and thymoquinone from PLGA nanomatrix formulated by a modified double emulsion solvent evaporation method. In this topotecan (Hydrophilic moiety) was solubilized in the inner aqueous phase while thymoquinone (lipophilic moiety) was incorporated into the organic phase of the double emulsion. Formulated nanoparticles were characterized by zeta potential, surface morphology, injectability and reconstitution time. The optimized formulation had particle size of 240.7± 8.3 nm and percent entrapment and loading of 62.6± 2.6 % and 6.52 ± 0.25 respectively for thymoquinone and 42.3 ± 1.2% and 3.6 ± 0.26 for topotecan respectively. DSC and XRD results have confirmed the transformation of drug from its crystalline to amorphous form when entrapped in the PLGA nanomatrix. Drug loaded nanoparticles revealed a sustained release pattern of both the drugs with a minimal burst release. The short term accelerated stability analysis showed a minimal variation in the release pattern.</td>
<td>2017</td>
<td>72</td>
</tr>
</tbody>
</table>
2. Biodegradable poly(d,l) lactic acid nanoparticles
 Tamoxifen citrate
 Biodegradable poly (d,l) lactic acid nanoparticles were prepared by modified spontaneous emulsification solvent diffusion method. *In vitro* studies for cytotoxicity revealed that MCF-7 and MDA-MB-231 cells lines were more sensitive to tamoxifen loaded nanoparticles than tamoxifen citrate alone. DNA ladder and the expression of Bax to Bcl-2 ratio were higher in tamoxifen loaded nanoparticles than that in alone tamoxifen citrate.

3. Monomethoxy polyethylene glycol amine-poly lactide-co-glycolide (mPEG-PLGa) co-polymer
 Gemcitabine
 Gemcitabine, a nucleoside analog, has a short half-life in systemic circulation due to its enzymatic degradation. To overcome this problem, monomethoxy polyethylene glycol amine-poly lactide-co-glycolide (mPEG-PLGa) co-polymer was synthesized. Gemcitabine loaded mPEG-PLGa nanoparticles (NPs) exhibited sustained drug release profile, compatible with blood and enhanced cellular uptake. The cell cytotoxicity of mPEG-PLGa NPs were observed in MiaPaCa-2 and MCF-7 cells. The half-life of gemcitabine loaded nanoparticles was remarkably enhanced (19 folds) as compared to pure gemcitabine which improved anticancer efficacy in Ehrlich ascites bearing Balb-c mice.

4. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles
 Rapamycin and Piperine
 Rapamycin (RPM) with a chemosensitizer (piperine) loaded Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles were prepared by nanoprecipitation method for improved oral bioavailability and efficacy. Prepared nanoparticles showed sustained *in vitro* drug release and it has been found that the uptake of the Rapamycin (P-gp substrate) increased in the presence of piperine in an everted gut sac method. Pharmacokinetic studies showed improved bioavailability of 4.8 folds in combination with piperine. An *in vitro* cell line studies indicates better efficacy of rapamycin nanoparticles compared to free drug solution which suggests that the use of a combination of rapamycin with piperine nanoparticles would be an effective approach in the treatment of breast cancer.

5. PLGA nanoparticles, Emulsified nanoprecipitation technique
 Tamoxifen
 Tamoxifen loaded PLGA nanoparticles (Tmx-PLGa) were prepared by emulsified nanoprecipitation technique. Tmx-PLGa has been evaluated for its better DNA cleavage potential, cytotoxicity using Dalton’s lymphoma ascites cells and MDA-MB231 breast cancer cells. *In vitro* cytotoxicity studies indicate that Tmx-PLGa showed excellent DNA cleavage potential as compared to pure Tmx. Fluorescence imaging of nuclear fragmentation and condensation exhibiting significant increase of apoptosis (70%) in PLGa-Tmx while pure drug (58%). Enhanced DNA cleavage potential, nuclear fragmentation and condensation in apoptotic cells confirm greater bioavailability of PLGa-Tmx as compared to pure Tmx. Tamoxifen loaded PLGA nanoparticles may act as a novel vehicle for the treatment of cancer.

6. Biotin-F127-PLA or F127-PLA polymeric nanoparticles
 Camptothecin
 Camptothecin incorporated into biotin-F127-PLA or F127-PLA polymeric nanoparticles (NPs) prepared by a dialysis method. Results indicate that the targeted CPT NPs exhibited regular spherical shape (mean diameter 180 nm). *In vitro* release exhibited an initial burst (40%) within 12 h, followed by a slow release of camptothecin. The in vitro antitumor effect of the Camptothecin-loaded nanoparticles was determined against H22 cells using an MTT assay which exerted significant antitumor effects as compared to free Camptothecin. The targeted Camptothecin NPs showed increased *in vivo* tumor inhibition.

7. PLGA/Solutol HS15 nanoparticles
 Docetaxel
 Docetaxel loaded PLGA/Solutol HS15 nanoparticles (NPs) were fabricated by a modified emulsification solvent evaporation method. *In vitro* release studies, indicates that emulsifying property of Solutol HS15 seemed to contribute to the enhanced drug release of Docetaxel from NPs at physiological pH. These NP can be a promising local anticancer drug delivery system for cancer therapy.

8. Biotinylated chitosan-poly(d,l)-
 Epirubicin
 Surface modification of poly(d,l-lactide-co-glycolide) nanoparticles with biotinylated chitosan of Epirubicin loaded

ISSN: 2250-1177
<table>
<thead>
<tr>
<th>Substance</th>
<th>Description</th>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methotrexate</td>
<td>It has been reported that development of methotrexate loaded poly(lactic-co-glycolic acid) coating on Mg-Al layered double hydroxide (LDH) nanoparticles prepared by double and single emulsion-solvent evaporation technique. The optimized nanoparticles were assessed for in vitro drug release kinetics.</td>
<td>2015</td>
<td>83</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>It has been reported that development of methotrexate loaded poly(lactic-co-glycolic acid) coating on Mg-Al layered double hydroxide (LDH) nanoparticles prepared by double and single emulsion-solvent evaporation technique. The optimized nanoparticles were assessed for in vitro drug release kinetics.</td>
<td>2015</td>
<td>83</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
<tr>
<td>Lipid polymer hybrid nanoparticles</td>
<td>Docetaxel (DTX) lipid polymer hybrid nanoparticles consist of a pH-responsive PEG layer that gets detached prior to its cellular uptake. Docetaxel was added into the lipid core of the nanoparticles, which was then protected with the pH-responsive block copolymer polyethylene glycol-b-polyaspartic acid using a modified-emulsion method. Drug release from docetaxel loaded nanoparticles was pH-sensitive, which is helpful in tumor targeting. The negative surface charge and PEG shell of vehicle enhanced the blood circulation time and improved physiological activity of docetaxel loaded nanoparticles as compared to free docetaxel. In vivo anticancer effect of Docetaxel lipid polymer hybrid nanoparticles was further confirmed by the elevated levels of poly ADP ribose polymerase and caspase-3 found in the tumors after treatment. Thus, the results indicate that Docetaxel lipid polymer hybrid nanoparticles system could be an effective new treatment for cancer.</td>
<td>2015</td>
<td>81</td>
</tr>
</tbody>
</table>
CONCLUSION

The advantageous effects of polymeric nanoparticles depend on their physicochemical properties such as size, shape, and surface properties. The potential advantages of nanoparticles are improved bioavailability, increased aqueous solubility, increased bio-distribution of drug in the body and targeting the drug to specific location within the body. Emerging technologies and method of preparation play a critical for development of safe and effective drug delivery system. Polymeric nanoparticles based drug delivery system has a promising future in the areas of diagnosis, imaging, and therapeutics

Conflicts of interest: Nil

Acknowledgment: Nil

REFERENCES

About the Authors:

Gurpreet Singh
Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar Punjab-143005, India.
ORCID ID: http://orcid.org/0000-0001-5436-2697,
Researcher ID: D-9909-2014,
Scopus Author ID: 56166600300
E-mail: gurpreet_pharma85@yahoo.com,
Mobile: +91-9814085601

Dr. Abdul Faruk
Presently, Head, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University) Chauras Campus, P.O. Kilkeleshwar, Via Kirtinagar Distt. Tehri Garhwal-249161 Uttrakhand E-mail: abdul_faruk@yahoo.com
Email: abdul_faruk@yahoo.com Mobile: +91-9412079188, +91-9456348123

Prof. Preet Mohinder Singh Bedi
Head, Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
E-mail: bedi_preet@yahoo.com
Mobile: +91-9815698249