TRANSDERMAL DRUG DELIVERY SYSTEM

A drug delivery system has over

The oral drug delivery system has overcome a no. of
transdermal flux. The ethosome is used for
delivery of drug by transdermal route. This route is most
important route of drug administration. The ethosome is
transport the active drug through the stratum corneum
layer of skin in comparison to the conventional
liposome. For the trance dermal drug delivery the stratum corneum layer is main barrier for permeation ,
for this aspect design a carrier to be applied topically both for topically and systemic drug administration. The
combination of phospholipids and higher concentration of ethanol in vesicular formulation is responsible for the
systemic effect and for the deeper distribution and
penetration in the skin lipid bilayers. Ethosome can
entrap drug molecule with various physiochemical
characteristics i.e. of hydro phallic and lipophilic or amphiphilic. Liposome, noisome, transferosome and ethosome also have been reported to enhance permeability of drug through the stratum corneum barrier. Permeation enhancer increases the permeability of the skin, so that the drug can be cross through the skin.
NEED FOR TRANSDERMAL DRUG DELIVERY

Despite the challenges, Transdermal delivery (TDD) offers several unique advantages including relatively large and readily accessible surface area for absorption, ease of application and termination of therapy. Further, evolution of better technologies for delivering drug molecules, safe penetration enhancers and the use of vesicular carriers have rejuvenated the interest for designing TDD system for drugs that were thought to be unfit for transdermal delivery.

ADVANTAGE OF ETHOSOMAL DRUG DELIVERY

- Enhanced permeation of drug through skin for transdermal drug delivery.
- It contains non-toxic raw material in formulation.
- Ethosome composition is safe and the components are approved for pharmaceutical and cosmetic use.
- Delivery of lung molecules (peptides protein molecules) is possible.
- Simple method for drug delivery in comparison to iontophoresis and phonophorresis and other complication method.
- The ethosome system is passive non-invasive and is available for immediate commercialization.
- High patient compliance the ethosomal drug is administrated in semisolid form (gel or cream) hence producing high patient compliance.
- Ethosomal drug delivery system can be applied widely in pharmaceutical veterinary cosmetic field.

DISADVANTAGE OF ETHOSOME DRUG DELIVERY

- Drugs that require high blood levels cannot be administered – limited only to potent molecules, those requiring a daily dose of 10mg or less.
- Ethosomal administration is not a means to achieve rapid bolus type drug input, rather it is usually designed to offer slow, sustained drug delivery.
- Adequate solubility of the drug in both lipophilic and aqueous environments to reach dermal microcirculation and gain access to the systemic circulation.
- The molecular size of the drug should be reasonable that it should be absorbed percutaneously.
- Adhesive may not adhere well to all types of skin. Uncomfortable to wear.
- May not be economical. Poor yield.
- Skin irritation or dermatitis due to excipients and enhancers of drug delivery systems.
- In case if shell locking is ineffective then the ethosomes may coalesce and fall apart on transfer into water.
- Loss of product during transfer from organic to water media.
- The main advantage of ethosomes over liposomes is the increased permeation of the drug.

COMPOSITION OF ETHOSOMES

Ethosome are vesicular carrier composed of hydroalcoholic or hydroglycolic phospholipids, in which the concentration of water and alcohol is high. The high concentration of ethanol makes the ethosome unique. The range of alcohol in final product is 20-30%. The ethosome is contain phospholipid with various chemical structure like phosphotidyl choline, hydrogenated phosphotidyl choline phosphatic acid and phosphotidyl glycerol, phosphatidyl inositol, alcohol, water and propylenrglycol. The drug delivery can be change by changing the ratio of alcohol:water or alcohol-polyol:water. Some preferred phospholipid are soyaphaspholipids such as phospholipon90 (PL-90), it is usually employed in range of 0.5-10% w/w cholesterol at connected rangimg b/w 0.1/1% can also be added to the preparation.

EXAMPLE- Alcohol like ethanol and isopropyl alcohol and glycols like propylene glycol transcutol are generally used. Some time non-ionic surfactant is used with phospholipids preparation and cationic lipid like coca-amide POE alkyl amine, dodecylamine, cetrimide etc are generally used. The concentration of the non-aqueous phase (alcohol and glycol) may long b/w 22-70%.
Table 1: Different Additive Employed in Formulation of Ethosome

<table>
<thead>
<tr>
<th>CLASS</th>
<th>EXAMPLE</th>
<th>USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phospholipids</td>
<td>Soya phosphatidyl choline</td>
<td>Vesicles forming component</td>
</tr>
<tr>
<td></td>
<td>Egg phosphatidyl choline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dipalmityl phosphatidyl choline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distearyl phosphatidyl choline</td>
<td></td>
</tr>
<tr>
<td>Polyglycol</td>
<td>Propylene glycol</td>
<td>As a skin penetration enhancer</td>
</tr>
<tr>
<td></td>
<td>Transcutol RTM</td>
<td></td>
</tr>
<tr>
<td>Alcohol</td>
<td>Ethanol</td>
<td>For providing the softness for vesicle membrane</td>
</tr>
<tr>
<td></td>
<td>Isopropyl alcohol</td>
<td>As a penetration enhancer</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>Cholesterol</td>
<td>For providing the stability to vesicle membrane</td>
</tr>
<tr>
<td>Dye</td>
<td>Rhodamine-123</td>
<td>For characterization study</td>
</tr>
<tr>
<td></td>
<td>Rhodamine red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluoresceine Isothiocyanate (FITC)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-Carboxy fluorescence</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>Carbopol D934</td>
<td>As a gel former</td>
</tr>
</tbody>
</table>

SKIN.21

The skin is the largest organ of the body and has a surface area about 1.5-2 cm² in adults. There are 2 important layers: a. Epidermis b. Dermis. The epidermis is most superficial layer of the skin and is composed of stratified keratinized squamous epithelium.

The epidermis is composed of 4-5 layers depending on the region of skin being considered. These layers are:

a) - cornified layer (stratum corneum)
b) - translucent layer (stratum granulosum)
c) - spinous layer (stratum spinosum)
d) - germinal layer (stratum basale)

The thickness of stratum corneum layer is 10 micrograms and it consists of 10-25 rows of dead keratinocytes embedded in a lipid matrix. The heterogeneous structure of the stratum corneum is composed of approximately 75-80% protein, 5-15% lipid, 5-10% unidented on a drug weight basis.25

Figure 3: Structure of Skin 22

a) Stratum corneum—it is composed of 10-30 layers of polyhedral anucleated keratinocytes, with the palms and soles having the most layers. Keratinocytes are surrounded by a protein envelope, filled with water-retaining keratin proteins, attached through corneodesmosomes and surrounded in the extracellular space by stacked layer of lipid. The stratum corneum layer plays an important role in the barrier function of topical/transdermal drug delivery. Human skin has selective permeability for drug, lipophilic drug can pass through the skin but the drug which are hydrophilic in nature cannot pass through skin. Water soluble drug show either very less or no permeation. To improve the permeation of drug through the skin various mechanisms have been investigated, including use of chemical or physical enhancer such as iontophoresis or sonophoresis. Liposomes, niosomes, transfersomes and ethosome are also enhancing the permeability of drug through stratum corneum. Permeability enhancer increase the permeability of the skin so that the drug can cross the through the skin easily. Ethosomes can enhance permeation through the stratum corneum barrier. (3, 23, 24) The thickness of stratum corneum layer is 10 micrograms and it consists of 10-25 rows of dead keratinocytes embedded in a lipid matrix. The heterogeneous structure of the stratum corneum is composed of approximately 75-80% protein, 5-15% lipid, 5-10% unidented on a drug weight basis.25
MECHANISM OF DRUG PENETRATION:

It is the pass through that the first pass part of the mechanism is due to the ethanol effect where by interaction of the ethanol into intracellular lipid increasing lipid fluidity and decreasing the density of lipid multilayer. This is followed by the ethosome effect, that includes inter lipid penetration and permeation by the opening of new pathways due to the fusion of ethosome with skin lipid.

![Figure 4: Cross section of Skin](image)

![Figure 5: Release of drug from ethosome in deep layer of the skin](image)
THE DRUG ABSORPTION OCCURS IN FOLLOWING TWO PHASE: 27,28

a) - Ethanol effect
b) - Ethosome effect

a) - ETHANOL EFFECT:
Ethanol acts as a penetration enhancer through the skin. The mechanism of penetration enhancing effect is well known. Ethanol penetrates into intracellular lipid sand increase the fluidity of cell membrane lipid and decrease the density of lipid multilayer of cell membrane.

ETHANOL: AS PENETRATION ENHANCER:
Substances that reversibly reduce the barrier resistance of the stratum corneum are known as chemical penetration enhancers. 20 Ethanol is one of the most commonly used permeation enhancers. A number of mechanisms have been proposed for permeation enhancing action of ethanol. As a solvent, ethanol can be included in the formulation to enhance the solubility of the drug. This is particularly important for poorly soluble permeants, as they are prone to depletion in the donor vehicle. Ethanol is a relatively volatile solvent and will rapidly evaporate at skin tem-perature. Ethanol loss from a formulation may lead to the drug becoming supersaturated, which influence drug will flux across the membrane. 27, 30, 31

b) – ETHOSOMES EFFECT:

METHOD OF PREPARATION OF ETHOSOME
Ethosomal formulation may be prepared by hot or cold or injection method or optimized method.

These methods are very simple and convenient and do not involve any sophisticated instrument or complicated process and easy to scale up at industrial level.

A) - COLD METHOD:

Take the, phospholipids, drug and other lipid materials

Dissolved in ethanol in a covered vessel at room temperature by vigorous stirring with the use of mixer

Propylene glycol or other polyol is added during stirring and mixture is heated to 300C in water bath.

Pre heated water 300C is added to the mixture, which is then stirred for 5 min in a covered vessel.

The vesicle size of ethosomal formulation can be decreased to desire extend using sonication or extrusion method.

The formulation is stored under refrigeration 32, 34
B) - HOT METHOD

In these method phospholipids is dispersed in water by heating in a water bath at 40°C until a colloidal solution is obtained.

In a separate vessel ethanol and propylene glycol are mixed and heated to 40°C. Once both mixtures reach 40°C, the organic phase is added to the aqueous one.

The drug is dissolved in water or ethanol

The vesicle size of ethosomal formulation can be decreased to the desire extent using probe sonication or extrusion method. 32, 34, 35

C) - INJECTION METHOD

In this method take phospholipids and drug dissolve in ethanol and propylene glycol solution in closed vessel

Heat the mixture to 30°C in water bath

Add slowly-slowly distilled water in a fine stream and mixing at700 rpm in closed vessel for 5 min at 30°C temperature

Preparation store at 4°C, sonication in 3 cycles of 5 min with 5 min rest b/w the cycle 36

Store the formulation at 4°C in the container 35, 37

D) - OPTIMIZATION METHOD

Take the phospholipid90 dissolve in ratio of chloroform: methanol

Remove the organic solvent from rotator flask evaporator above the lipid transition temperature 55°C at 600 rpm

Further remove the organic solvent by maintaining temperature for 30 min

Thin film formed and hydrates the film with hydroethanolic mixture (1% w/v) at 60 rpm for 1 hour

Sonication in 3 cycle of 5 min with 5 min rest b/w the cycle Store the formulation at 4°C in the container 37, 38
VARIOUS METHOD OF CHARECTERIZATION OF ETHOSOME-

1. Optical Microscope Observation-
The ethosomal dispersion is spread on the glass slide with the help of glass rod. Prepare the multimamella vesicles were detected by examining the ethosomal suspension using an optical microscope with the magnification power of 100 X. 27, 39, 40

2. Vesicle size and zeta potential-
Particle size of the ethosomes can be detected by dynamic light scattering (DLS) and photon correlation spectroscopy (PCS). Zeta potential of the ethosome suspension can be measured by Zeta meter 27, 41

3. Transition temperature-
The transition temperature of the vesicular lipid systems can be measured by using differential scanning calorimetric. 27, 42

4. Visualization-
Visualization of ethosomes can be done by using instrument transmission electron microscopy (TEM) and by scanning electron microscopy (SEM). Visualization of an ethosomal formulation by the electron microscopy reveals exhibited vesicular structure 300-400 nm in diameter. 5, 43

5. Scanning electron microscopy (SEM)-
The different type of lipid affects the surface morphology or shape of the particles. Solid lipid microparticles are deposits on metallic surface then it placed in liquid nitrogen and dried under vacuum. The microparticles are coated uniformly with gold by freeze-dried. The morphology and surface properties of ethosome formulation can be measured by a scanning electron microscope.

6. Drug content-
Drug substance or content of the ethosomes can be determined by using UV spectrophotometer. This can also be quantified by a modified high performance liquid chromatographic method.

7. Stability studies-
The stability of vesicles can be determined by assessing the size and structure of the vesicles over time. It means size is measured by DLS and a structural change is observed by TEM 27, 44

8. Entrapment Efficiency-
The entrapment efficiency of drug by ethosomes can be measured by the ultra centrifugation Technique. 5, 45

9. Surface tension measurement-
The surface tension activity of drug in aqueous solution can be measured by the ring method in a Du Nouy ring tensiometer. 5, 46

10. Skin permeation studies-
The ability of the ethosomal preparation to penetrate the skin layers can be measured by confocal laser scanning microscopy (CLSM).

EVALUATION OF ETHOSOME-

1. Filter Membrane: Vesicle Interaction Study by Scanning Electron Microscopy- Take vesicle suspension (0.2 mL) and take a filter membrane having a pore size of 50 nm. The formulation is applied on the filter membrane and placing it in diffusion cells. The upper side of the filter membrane was exposed to the air, and the lower side of filter membrane is contact with phosphate buffer solution, (having pH 6.5). The filter membranes removed after 1 hour and prepared for SEM studies by fixation at the 4°C in Karnovsky’s fixative overnight followed by dehydration with graded ethanol solutions (30%, 50%, 70%, 90%, 95%, and 100% v/v in water). Finally, filter membranes was coated with gold and examined in SEM. 47, 48

2. Skin Permeation Studies-
The hair of test animals (rats) is remove or carefully trimmed short (<2 mm) with the help of scissors, and the abdominal skin is removed from the connective tissue with the help of scalpel. The skin is placed on aluminum foil, and the dermal side of the skin was gently teased off for any adhering fat. The standard permeation area of the diffusion cell and receptor cell volume is 1.0 cm² and 10 ml, respectively. The temperature is maintained at 32°C± 1°C. The receptor compartment contained phosphate buffer solution (10 mL of pH 6.5). Ethosomal formulation (1.0 ml) was applied to the epidermal surface of skin. Samples (0.5 ml) were withdrawn through the sampling port of the diffusion cell by the pipet at 1, 2, 4, 8, 12, 16, 20 & 24 hour time intervals and analyzed by high performance liquid chromatography assay. 47

3. Vesicle-Skin Interaction Study by TEM and SEM-
Take the animal and cut the ultra thin sections like (Ultra cut, Vienna, and Austria), collect the section to coated grids and analyzed by transmission electron microscope. For SEM analysis, take the sections of skin and dehydrated and mounted on stubs using an adhesive tape and coated with gold palladium with the help of fine coat ion sputter coater. The sections were analyzed under scanning electron microscope. 47, 48

4. Vesicle-Skin Interaction Study by Fluorescence Microscopy-
Fluorescence microscopy was carried according to the protocol used for TEM and SEM study. 5-μm thick skin sections were cut using microtome and examined under a fluorescence micro Cytotoxicity Assay MT-2 cells (T-lymphoid cell lines) were propagated in Dulbecco's modified Eagle medium containing 10% fetal calf serum, 100 U/ml penicillin, 100 mg/MI streptomycin, and 2 mmol/L L glutamine at 37°C under a 5% CO2 atmosphere. Cytotoxicity was expressed as the cytotoxic dose 50 (CD50) that induced a 50% reduction of absorbance at 540 nm. 47, 49

5. Drug Uptake Studies-

ISSN: 2250-1177 CODEN (USA): JDDTAO
The uptake of drug into MT-2(T-lymphoid cell lines) cells was incubated with 100 μl of the drug solution in phosphate buffer saline solution (pH 7.4). Ethosomal formulation, or marketed formulation, and then drug uptake was determined by analyzing the drug content by HPLC assay.47, 50, 51

6. HPLC Assay-
The drug bind with our receptor, and the amount of drug permeated in the receptor compartment in the vitro skin permeation experiments and in MT-2 cell was determined by HPLC. In the HPLC assay using methanol: distilled-water : acetonitrile (70:20:10 vol/vol), this mixture is a mobile phase delivered at 1 ml/min by LC 10-AT pump. A twenty-micro liter injection was eluted in column at room temperature. The column Eluent (solution) was examined at 271 nm using SPDM10A VP diode array UV detector. The coefficient of variance for standard curve ranged from 1.0% to 2.3%, and the squared correlation coefficient was 0.9968. 47, 52, 53

7. Statistical Analysis-
Statistical significance of all the data generated was tested by employing ANOVA followed by studentized range test. A confidence limit of P < .05 was fixed for interpretation of the results using the software PRISM. 47, 54

APPLICATION OF ETHOSOME AS A CARRIER SYSTEM

Various methods employing ethosomal formulation have shown better skin permeability of drugs. The uses of ethosomes as carrier system for transdermal/topical drug delivery are given below.

1. Pilosebaceous targeting-
Pilosebaceous units have been use for targeted drug therapy, and the targeted treatment of follicle related disorders such as acne or alopecia. Ethosomal formulation of minoxidil is a lipid soluble drug used for the baldness accumulates into nude mice skin two to seven folds higher and thus can be use for pilosebaceous targeting for better clinical efficacy. 5, 55, 56

2. Transdermal delivery-
Ethosomes enhance permeability of drug through stratum corneum skin barrier, it can be use for administration of those drugs having poor skin permeation, low oral bioavailability, first pass metabolism and suppress infection of transdermal root. 5, 56, 57, 58

Table 2: Application of Ethosomes as a Drug Carrier- 5

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti- viral agents</td>
<td>Prolonged drug action, reduced drug toxicity.</td>
</tr>
<tr>
<td>(Zidovudine)</td>
<td>Control release for prolonged period of time.</td>
</tr>
<tr>
<td>(Lamivudine)</td>
<td>Improved biological anti-inflammatory activity, sustained effect</td>
</tr>
<tr>
<td>(Stavudine)</td>
<td>Selective and prolong delivery of drug to desired site.</td>
</tr>
<tr>
<td>NSAIDS</td>
<td>Superior to the marketed gel for the topical administration.</td>
</tr>
<tr>
<td>(Diclofenac)</td>
<td>Increased skin permeation and biological activity two to three times.</td>
</tr>
<tr>
<td>(Aceclofenac)</td>
<td>Greater penetration ability than that of liposomes, More entrapment efficiency</td>
</tr>
<tr>
<td>Aцикловиру</td>
<td>Significant decrease in blood glucose level.</td>
</tr>
<tr>
<td>Topical Photodynamic Therapy (PDT)</td>
<td>Higher entrapment capacity, improved tansdermal flux, improved patient compliance.</td>
</tr>
<tr>
<td>(5- aminoenvulnic acid)</td>
<td>Complete inhibition of infection, prolonged drug action.</td>
</tr>
<tr>
<td>Insulin</td>
<td>Improved skin deposition and biological activity.</td>
</tr>
<tr>
<td>Trihexyphenidyl Hydrochloride</td>
<td>High penetration into deep layers of the skin.</td>
</tr>
<tr>
<td>(Erythromycin)</td>
<td>Targeting</td>
</tr>
<tr>
<td>(Cannabidol)</td>
<td>Improved biological anti-inflammatory activity, sustained effect.</td>
</tr>
<tr>
<td>Pilosebaceous (Minoxidil)</td>
<td>Improved biological anti-inflammatory activity, sustained effect.</td>
</tr>
<tr>
<td>Ammonium Glycyrrhizinate</td>
<td>Improved biological anti-inflammatory activity, sustained effect.</td>
</tr>
<tr>
<td>Salbutamol sulfate</td>
<td>Controlled release rate, enhanced skin permeation.</td>
</tr>
<tr>
<td>Testosterone</td>
<td>Significantly higher permeation into the skin increased systemically delivery</td>
</tr>
<tr>
<td>Propranolol</td>
<td>Better skin permeation.</td>
</tr>
<tr>
<td>Finasteride</td>
<td>Enhanced percutaneous absorption.</td>
</tr>
<tr>
<td>Bacitracin</td>
<td>Reduced drug toxicity.</td>
</tr>
<tr>
<td>Methotrexate (MTX)</td>
<td>Enhanced trans dermal flux, lower lag time, higher entrapment efficiency and better stability profile</td>
</tr>
<tr>
<td>Gold Nanopartical</td>
<td>Gold nanoparticle in ethosomes shows enhancement of pharmacological efficacy in trans dermal and dermal delivery systems.</td>
</tr>
</tbody>
</table>
3. Delivery of HIV drugs-

The antiretroviral therapy is a prolong therapy and has strong side effects. 3, 98 The zero order delivery of zidovudine, Lamivudine is a potent antiviral agent and it required to maintain anti – AIDS effect. Ethosomal formulations of the above drugs prolong the release with increased transdermal influx 5, 79. The topical preparation of acyclovir is used as antiviral drug for treatment of herpes labials. It shows low therapeutic efficiency due to poor permeation through skin as replication of virus takes places at the basal dermis. Ethosomal formulation of acyclovir show high therapeutic efficiency with shorter healing time and higher percentage of abortive lesions.

4. Delivery of problematic drug molecules-

Oral delivery of large biogenic molecules such as peptides or proteins and insulin is difficult because they are completely degraded in the GIT tract hence transdermal delivery is a better dosage form. But conventional transdermal formulation of biogenic molecules such as peptides or protein and insulin has poor permeation. Formulating these biogenic molecules into ethosomal preparation increase permeation and therapeutic efficacy. 3, 79

5. Future Prospects-

Introduction of ethosomes has started a new area in vesicular research for transdermal drug delivery. Different reports show a promising future of ethosomes in making transdermal delivery of various agents more effective. Further, research in this area will allow better control over drug release in vivo, allowing physician to make the therapy more effective. Ethosomes offers a good opportunity for the non-invasive delivery of small, medium and large sized drug molecules. The results of the first clinical study of acyclovir-ethosomal formulation support this conclusion. Multiliter quantities of ethosomal formulation can be prepared very easily, it can be a logical conclusion that ethosomal formulations possess promising future in effective dermal/transdermal delivery of bioactive agents.

PATENTED AND MARKETED FORMULATION OF ETHOSOME

Ethosomes was invented and patented by Prof. Elka Touitou along with her students of department of Pharmaceutics at the Hebrew University School of Pharmacy. Novel Therapeutic Technologies Inc (NTT) of Hebrew University has been succeeded in bringing a number of products to the market based on Ethosomal delivery system. Noicellex TM an anti cellulite formulation of Ethosome is currently marketed in Japan. Lipoduction TM another formulation is currently used in treatment of cellulite containing pure grape seed extracts (antioxidant) is marketed in USA. Similarly Physonics is marketing anti cellulite gel Skin Genuity in London. Nanominox containing monoxidil is used as hair tonic to promote hair growth is marketed by Sinere. 5, 62, 63

<table>
<thead>
<tr>
<th>Name of product</th>
<th>Uses</th>
<th>Uses Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celltight EF</td>
<td>Topical cellulite cream, contains a powerful combination of ingredients to increase metabolism and break down fat</td>
<td>Hampden Health, USA</td>
</tr>
<tr>
<td>Decorin cream</td>
<td>Anti-aging cream, treating, repairing, and delaying the visible aging signs of the skin including wrinkle lines, sagging, age spots, loss of elasticity, and hyper pigmentation</td>
<td>Genome Cosmetics, Pennsylvania, US</td>
</tr>
<tr>
<td>Nanominox</td>
<td>First monoxidil containing product, which uses Ethosomes. Contains 4% Monoxidil, well-known hair growth promoter that must be metabolized by sulfation to the active compound</td>
<td>Sinere, Germany</td>
</tr>
<tr>
<td>Noicellex</td>
<td>Topical anti-cellulite cream</td>
<td>Novel Therapeutic Technologies, Israel</td>
</tr>
<tr>
<td>Skin genuity</td>
<td>Powerful cellulite buster, reduces orange peel</td>
<td>Powerful cellulite buster, reduces orange peel</td>
</tr>
</tbody>
</table>

CONCLUSION

Ethosomes have been found to be much more efficient at delivering drug to the skin, it can be easily concluded that ethosomes can provide better skin permeation than liposomes. Ethosomes have been tested to encapsulate hydrophilic drugs, cationic drugs, proteins and peptides. Ethosomal carrier opens new challenges and opportunities for the development of novel improved therapies. Ethosomes are interesting and innovative vesicular systems that have appeared in the field of pharmaceutical technology and drug delivery in recent years. This carrier presents interesting features correlated with its ability to permeate intact through the human skin due to its high deformability.